Percolation thresholds on elongated lattices

被引:10
作者
Marrink, SJ [1 ]
Knackstedt, MA
机构
[1] Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Appl Math, Canberra, ACT 0200, Australia
[2] Univ New S Wales, Australian Petr Cooperat Res Ctr, Sydney, NSW 2052, Australia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 44期
关键词
D O I
10.1088/0305-4470/32/44/101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the percolation thresholds of both random and invasion percolation in two and three dimensions on elongated lattices; lattices with a geometry of Ld-1 x nL in d dimensions, where a denotes the aspect ratio of the lattice. Scaling laws for the threshold and spanning cluster density for random percolation are derived and simulation confirms the behaviour. A direct relationship between thresholds obtained for random percolation and invasion percolation is given and verified numerically.
引用
收藏
页码:L461 / L466
页数:6
相关论文
共 7 条
[1]   THE DISTRIBUTION OF PERCOLATING CONCENTRATIONS IN FINITE SYSTEMS [J].
HAAS, U .
PHYSICA A, 1995, 215 (03) :247-250
[2]   PERCOLATION THEORY OF RESIDUAL PHASES IN POROUS-MEDIA [J].
LARSON, RG ;
SCRIVEN, LE ;
DAVIS, HT .
NATURE, 1977, 268 (5619) :409-413
[3]  
MARRINK SJ, 1999, UNPUB
[4]   CRITICAL-BEHAVIOR OF THE SITE PERCOLATION MODEL ON THE SQUARE LATTICE IN A LXM GEOMETRY - MONTE-CARLO AND FINITE-SIZE SCALING STUDY [J].
MONETTI, RA ;
ALBANO, EV .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1991, 82 (01) :129-134
[5]  
SAHIMI M, 1994, APPL PERCOLATION THE
[6]  
Stauffer D., 2018, Introduction To Percolation Theory, Vsecond
[7]  
ZIFF RM, 1994, PHYS REV LETT, V72, P1942, DOI 10.1103/PhysRevLett.72.1942