Endogenous 2-oxoacids differentially regulate expression of oxygen sensors

被引:82
作者
Dalgard, CL [1 ]
Lu, HS [1 ]
Mohyeldin, A [1 ]
Verma, A [1 ]
机构
[1] Uniformed Serv Univ Hlth Sci, Dept Neurol, Bethesda, MD 20814 USA
关键词
hypoxia; hypoxia-inducible factor (HIF); oxaloacetate; oxygen sensor; prolyl hydroxylase; pyruvate;
D O I
10.1042/BJ20031647
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Adaptations to change in oxygen availability are crucial for survival of multi-cellular organisms and are also implicated in several disease states. Such adaptations rely upon gene expression regulated by the heterodimeric transcription factors HIFs (hypoxia-inducible factors). Enzymes that link changes in oxygen tensions with the stability and transcriptional activity of HIFs are considered as oxygen sensors. These enzymes are oxygen-, iron- and 2-oxoglutarate-dependent dioxygenases that hydroxylate key proline and asparagine residues in HIFalpha subunits. The constitutive inhibitory action of these enzymes on HIFs is relieved by hypoxia and by agents that displace iron or 2-oxoglutarate. Two of the enzymes, HPH (HIF prolyl hydroxylase)-1 and HPH-2, are known to be inducible by hypoxia in a HIF-dependent manner. This suggests the existence of a novel feedback loop for adjusting hypoxia-regulated gene expression. We have recently shown that HIF-1a stability, HIF-1 nuclear translocation and HIF-mediated gene expression in human glioma cell lines can be stimulated by pyruvate independently of hypoxia. In the present study we show that the endogenous 2-oxoacid oxaloacetate can also activate HIF-mediated gene expression. Pyruvate and oxaloacetate treatment of cells also up-regulates HPH-1 and HPH-2, but not HPH-3 or the HIF asparaginyl hydroxylase FIH-1 (factor inhibiting HIF). Regulation of HIF-1 and the expression of HPH homologue genes can thus be influenced by specific glycolytic and tricarboxylic acid cycle metabolites. These findings may underlie important interactions between oxygen homoeostasis, glycolysis, the tricarboxylic acid cycle and gluconeogenesis.
引用
收藏
页码:419 / 424
页数:6
相关论文
共 32 条
[1]   HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia [J].
Berra, E ;
Benizri, E ;
Ginouvès, A ;
Volmat, V ;
Roux, D ;
Pouysségur, J .
EMBO JOURNAL, 2003, 22 (16) :4082-4090
[2]   HIF-1-dependent transcriptional activity is required for oxygen-mediated HIF-1α degradation [J].
Berra, E ;
Richard, DE ;
Gothié, E ;
Pouysségur, J .
FEBS LETTERS, 2001, 491 (1-2) :85-90
[3]   The subtle side to hypoxia inducible factor (HIFα) regulation [J].
Bilton, RL ;
Booker, GW .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (05) :791-798
[4]   A conserved family of prolyl-4-hydroxylases that modify HIF [J].
Bruick, RK ;
McKnight, SL .
SCIENCE, 2001, 294 (5545) :1337-1340
[5]   Oxygen-dependent and -independent regulation of HIF-1alpha [J].
Chun, YS ;
Kim, MS ;
Park, JW .
JOURNAL OF KOREAN MEDICAL SCIENCE, 2002, 17 (05) :581-588
[6]   The von Hippel Lindau/hypoxia-inducible factor (HIF) pathway regulates the transcription of the HIF-proline hydroxylase genes in response to low oxygen [J].
del Peso, L ;
Castellanos, MC ;
Temes, E ;
Martín-Puig, S ;
Cuevas, Y ;
Olmos, G ;
Landázuri, MO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (49) :48690-48695
[7]   C-elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation [J].
Epstein, ACR ;
Gleadle, JM ;
McNeill, LA ;
Hewitson, KS ;
O'Rourke, J ;
Mole, DR ;
Mukherji, M ;
Metzen, E ;
Wilson, MI ;
Dhanda, A ;
Tian, YM ;
Masson, N ;
Hamilton, DL ;
Jaakkola, P ;
Barstead, R ;
Hodgkin, J ;
Maxwell, PH ;
Pugh, CW ;
Schofield, CJ ;
Ratcliffe, PJ .
CELL, 2001, 107 (01) :43-54
[8]  
Erez N, 2003, CANCER RES, V63, P8777
[9]   Drosophila cyclin D/Cdk4 requires Hif-1 prolyl hydroxylase to drive cell growth [J].
Frei, C ;
Edgar, BA .
DEVELOPMENTAL CELL, 2004, 6 (02) :241-251
[10]   Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor [J].
Hirsilä, M ;
Koivunen, P ;
Günzler, V ;
Kivirikko, KI ;
Myllyharju, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (33) :30772-30780