Training algorithms for fuzzy support vector machines with noisy data

被引:15
作者
Lin, CF [1 ]
Wang, SD [1 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 106, Taiwan
来源
2003 IEEE XIII WORKSHOP ON NEURAL NETWORKS FOR SIGNAL PROCESSING - NNSP'03 | 2003年
关键词
D O I
10.1109/NNSP.2003.1318051
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy support vector machines (FSVMs) provide a method to classify data with noises or outliers. Each data point is associated with a fuzzy membership that can reflect their relative degrees as meaningful data. In this paper, we investigate and compare two strategies of automatically setting the fuzzy memberships of data points. It makes the usage of FSVMs easier in the application of reducing the effects of noises or outliers. The experiments show that the generalization error of FSVMs is comparable to other methods on benchmark datasets.
引用
收藏
页码:517 / 526
页数:10
相关论文
共 13 条
[1]  
Bartlett P, 1999, ADVANCES IN KERNEL METHODS, P43
[2]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[3]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[4]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[5]  
Cristianini N, 2002, ADV NEUR IN, V14, P367
[6]   Fuzzy support vector machines [J].
Lin, CF ;
Wang, SD .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (02) :464-471
[7]   Soft margins for AdaBoost [J].
Rätsch, G ;
Onoda, T ;
Müller, KR .
MACHINE LEARNING, 2001, 42 (03) :287-320
[8]   Structural risk minimization over data-dependent hierarchies [J].
Shawe-Taylor, J ;
Bartlett, PL ;
Williamson, RC ;
Anthony, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) :1926-1940
[9]  
Vapnik V, 1999, NATURE STAT LEARNING
[10]  
Vapnik V., 1998, STAT LEARNING THEORY, V1, P2