A dimeric RNA quadruplex architecture comprised of two G:G(:A):G:G(:A) hexads, G:G:G:G tetrads and UUUU loops

被引:64
作者
Liu, H [1 ]
Matsugami, A [1 ]
Katahira, M [1 ]
Uesugi, S [1 ]
机构
[1] Yokohama Natl Univ, Dept Environm & Nat Sci, Grad Sch Environm & Informat Sci, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
基金
日本学术振兴会;
关键词
GGAGG-containing RNA; RNA quadruplex; RNA structure; NMR; parallel quadruplex with a loop;
D O I
10.1016/S0022-2836(02)00876-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Using CD and NMR, we determined the structure of an RNA oligomer, r(GGAGGUUUUGGAGG) (R14), comprising two GGAGG segments joined by a UUUU segment. A modified quadruplex structure was observed for r(GGAGGUUUUGGAGG) in solution even in the absence of K+. An unusually stable dimeric RNA quadruplex architecture formed from two strands of r(GGAGGUUUUGGAGG) at low K+ concentration is reported here. In each strand of r(GGAGGUUUUGGAGG), two sets of successive turns in the GGAGG segments and turns at both ends of the UUUU loops drive four G-G steps to align in a parallel manner, a core with two stacked G-tetrads being formed. Two adenine bases bind to two edges of one G:G:G:G tetrad through the sheared G:A mismatch augmenting the tetrad into a G:G(:A):G:G(:A) hexad. Thus, one molecule of r(GGAGGUUUUGGAGG) folds into a modified quadruplex comprising a G:G:G:G tetrad, a UUUU double-chain reversal loop and a G:G(:A):G:G(:A) hexad. Two such molecules further associate by stacking through the dimeric hexad-hexad interface with a rotational symmetry. The ribose rings of most nucleotides take S (close to C2'-endo) puckering, which is unusual for an RNA. K+ can increase the stability of this quadruplex structure; the number of bound K+ was estimated from the results of the titration experiment. Besides G:G and G:A mismatches, a network of hydrogen bonds including O4'-NH2 and C-H...O hydrogen bonds, and the extensive base stacking contribute to the high thermodynamic stability of R14. Our results could provide the stereochemical and thermodynamic basis for elucidating the biological role of the GGAGG-containing RNA segments abundantly existing in various RNAs. Relevance to quadruplex-mediated mRNA-FMRP binding and HIV-1 genome RNA dimerization is discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:955 / 970
页数:16
相关论文
共 67 条
[1]   STRUCTURE OF THE P1 HELIX FROM GROUP-I SELF-SPLICING INTRONS [J].
ALLAIN, FHT ;
VARANI, G .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 250 (03) :333-353
[2]   Rules governing the orientation of the 2'-hydroxyl group in RNA [J].
Auffinger, P ;
Westhof, E .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 274 (01) :54-63
[3]   HAIRPIN AND PARALLEL QUARTET STRUCTURES FOR TELOMERIC SEQUENCES [J].
BALAGURUMOORTHY, P ;
BRAHMACHARI, SK ;
MOHANTY, D ;
BANSAL, M ;
SASISEKHARAN, V .
NUCLEIC ACIDS RESEARCH, 1992, 20 (15) :4061-4067
[4]   TRANSLATION OF CHLOROPLAST-ENCODED MESSENGER-RNA - POTENTIAL INITIATION AND TERMINATION SIGNALS [J].
BONHAMSMITH, PC ;
BOURQUE, DP .
NUCLEIC ACIDS RESEARCH, 1989, 17 (05) :2057-2080
[5]   Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome [J].
Brown, V ;
Jin, P ;
Ceman, S ;
Darnell, JC ;
O'Donnell, WT ;
Tenenbaum, SA ;
Jin, XK ;
Feng, Y ;
Wilkinson, KD ;
Keene, JD ;
Darnell, RB ;
Warren, ST .
CELL, 2001, 107 (04) :477-487
[6]  
BRUNGER AT, 1993, XPLOR VERSION 3 1 SY
[7]   Structure-function correlations of the insulin-linked polymorphic region [J].
Catasti, P ;
Chen, X ;
Moyzis, RK ;
Bradbury, EM ;
Gupta, G .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 264 (03) :534-545
[8]   SOLUTION STRUCTURE OF AN UNUSUALLY STABLE RNA TETRAPLEX CONTAINING G-QUARTET AND U-QUARTET STRUCTURES [J].
CHEONG, CJ ;
MOORE, PB .
BIOCHEMISTRY, 1992, 31 (36) :8406-8414
[9]   CIS ELEMENTS AND TRANS-ACTING FACTORS INVOLVED IN THE RNA DIMERIZATION OF THE HUMAN-IMMUNODEFICIENCY-VIRUS HIV-1 [J].
DARLIX, JL ;
GABUS, C ;
NUGEYRE, MT ;
CLAVEL, F ;
BARRESINOUSSI, F .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 216 (03) :689-699
[10]   Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function [J].
Darnell, JC ;
Jensen, KB ;
Jin, P ;
Brown, V ;
Warren, ST ;
Darnell, RB .
CELL, 2001, 107 (04) :489-499