MADS-box gene evolution-structure and transcription patterns

被引:66
作者
Johansen, B [1 ]
Pedersen, LB [1 ]
Skipper, M [1 ]
Frederiksen, S [1 ]
机构
[1] Univ Copenhagen, Inst Bot, DK-1123 Copenhagen K, Denmark
关键词
MADS-box genes; ABC model; evolution; phylogeny; transcription patterns; gene structure; conserved motifs;
D O I
10.1016/S1055-7903(02)00032-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study presents a phylogenetic analysis of 198 MADS-box genes based on 420 parsimony-informative characters. The analysis includes only MIKC genes; therefore several genes from gymnosperms and pteridophytes are excluded. The strict consensus tree identifies all major monophyletic groups known from earlier analyses, and all major monophyletic groups are further supported by a common gene structure in exons 1-6 and by conserved C-terminal motifs. Transcription patterns are mapped on the tree to obtain an overview of MIKC gene transcription. Genes that are transcribed only in vegetative organs are located in the basal part of the tree, whereas genes involved in flower development have evolved later. As the universality of the ABC model has recently been questioned, special account is paid to the expression of A-, B-, and C-class genes. Mapping of transcription patterns on the phylogeny shows all three classes of MADS-box genes to be transcribed in the stamens and carpels. Thus the analysis does not support the ABC model as formulated at present. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:458 / 480
页数:23
相关论文
共 140 条
[1]   MALE AND FEMALE FLOWERS OF THE DIOECIOUS PLANT SORREL SHOW DIFFERENT PATTERNS OF MADS BOX GENE-EXPRESSION [J].
AINSWORTH, C ;
CROSSLEY, S ;
BUCHANANWOLLASTON, V ;
THANGAVELU, M ;
PARKER, J .
PLANT CELL, 1995, 7 (10) :1583-1598
[2]   An ancestral MADS-box gene duplication occurred before the divergence of plants and animals [J].
Alvarez-Buylla, ER ;
Pelaz, S ;
Liljegren, SJ ;
Gold, SE ;
Burgeff, C ;
Ditta, GS ;
de Pouplana, LR ;
Martinez-Castilla, L ;
Yanofsky, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5328-5333
[3]   MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes [J].
Alvarez-Buylla, ER ;
Liljegren, SJ ;
Pelaz, S ;
Gold, SE ;
Burgeff, C ;
Ditta, GS ;
Vergara-Silva, F ;
Yanofsky, MF .
PLANT JOURNAL, 2000, 24 (04) :457-466
[4]   Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots [J].
Ambrose, BA ;
Lerner, DR ;
Ciceri, P ;
Padilla, CM ;
Yanofsky, MF ;
Schmidt, RJ .
MOLECULAR CELL, 2000, 5 (03) :569-579
[5]   A NOVEL CLASS OF MADS BOX GENES IS INVOLVED IN OVULE DEVELOPMENT IN PETUNIA [J].
ANGENENT, GC ;
FRANKEN, J ;
BUSSCHER, M ;
VANDIJKEN, A ;
VANWENT, JL ;
DONS, HJM ;
VANTUNEN, AJ .
PLANT CELL, 1995, 7 (10) :1569-1582
[6]   DIFFERENTIAL EXPRESSION OF 2 MADS BOX GENES IN WILD-TYPE AND MUTANT PETUNIA FLOWERS [J].
ANGENENT, GC ;
BUSSCHER, M ;
FRANKEN, J ;
MOL, JNM ;
VANTUNEN, AJ .
PLANT CELL, 1992, 4 (08) :983-993
[7]   THE CDNA SEQUENCE OF A CAULIFLOWER APETALA-1 SQUAMOSA HOMOLOG [J].
ANTHONY, RG ;
JAMES, PE ;
JORDAN, BR .
PLANT PHYSIOLOGY, 1995, 108 (01) :441-442
[8]   Isolation and characterisation of the carnation floral-specific MADS box gene, CMB2 [J].
Baudinette, SC ;
Stevenson, TW ;
Savin, KW .
PLANT SCIENCE, 2000, 155 (02) :123-131
[9]   Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba [J].
Bonhomme, F ;
Kurz, B ;
Melzer, S ;
Bernier, G ;
Jacqmard, A .
PLANT JOURNAL, 2000, 24 (01) :103-111
[10]   Characterization of SaMADS D from Sinapis alba suggests a dual function of the gene: In inflorescence development and floral organogenesis [J].
Bonhomme, F ;
Sommer, H ;
Bernier, G ;
Jacqmard, A .
PLANT MOLECULAR BIOLOGY, 1997, 34 (04) :573-582