Casimir energy for spherical boundaries

被引:12
作者
Hagen, CR [1 ]
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
来源
PHYSICAL REVIEW D | 2000年 / 61卷 / 06期
关键词
D O I
10.1103/PhysRevD.61.065005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Calculations of the Casimir energy for spherical geometries which are based on integrations of the stress tensor are critically examined. It is shown that despite their apparent agreement with numerical results obtained from mode summation methods, they are subject to criticism on several points. Specifically, these include (1) an improper application of the stress tensor to spherical boundaries, (2) the neglect of pole terms in contour integrations, and (3) the imposition of inappropriate boundary conditions upon the relevant propagators. A calculation which is based on the stress tensor and which avoids such problems is shown to be possible. IT is, however. equivalent to the mode summation method and does not therefore constitute an independent calculation of the Casimir energy.
引用
收藏
页数:6
相关论文
共 20 条
[1]   ELECTROMAGNETIC-WAVES NEAR PERFECT CONDUCTORS .2. CASIMIR EFFECT [J].
BALIAN, R ;
DUPLANTIER, B .
ANNALS OF PHYSICS, 1978, 112 (01) :165-208
[2]   SCALAR CASIMIR EFFECT FOR A D-DIMENSIONAL SPHERE [J].
BENDER, CM ;
MILTON, KA .
PHYSICAL REVIEW D, 1994, 50 (10) :6547-6555
[3]   Casimir energies for massive scalar fields in a spherical geometry [J].
Bordag, M ;
Elizalde, E ;
Kirsten, K ;
Leseduarte, S .
PHYSICAL REVIEW D, 1997, 56 (08) :4896-4904
[4]   Heat kernel coefficients of the Laplace operator on the D-dimensional ball [J].
Bordag, M ;
Elizalde, E ;
Kirsten, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (02) :895-916
[5]   Zeta function determinant of the laplace operator on the D-dimensional ball [J].
Bordag, M ;
Geyer, B ;
Kirsten, K ;
Elizalde, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (01) :215-234
[6]   Casimir energy of a spherical shell [J].
Bowers, ME ;
Hagen, CR .
PHYSICAL REVIEW D, 1999, 59 (02)
[7]   QUANTUM ELECTROMAGNETIC ZERO-POINT ENERGY OF A CONDUCTING SPHERICAL SHELL AND CASIMIR MODEL FOR A CHARGED PARTICLE [J].
BOYER, TH .
PHYSICAL REVIEW, 1968, 174 (05) :1764-&
[8]  
Casimir H. B. G., 1948, P K NED AKAD WETENSC, V51, P793, DOI DOI 10.4236/WJNSE.2015.52007
[10]   CASIMIR SELF-STRESS ON A PERFECTLY CONDUCTING CYLINDRICAL-SHELL [J].
DERAAD, LL ;
MILTON, KA .
ANNALS OF PHYSICS, 1981, 136 (02) :229-242