Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum

被引:242
作者
Nason, GP
von Sachs, R
Kroisandt, G
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[2] Catholic Univ Louvain, B-3000 Louvain, Belgium
[3] Univ Kaiserslautern, D-67663 Kaiserslautern, Germany
关键词
local stationarity; non-linear wavelet shrinkage; non-stationary time series; wavelet periodogram; wavelet processes; wavelet spectrum;
D O I
10.1111/1467-9868.00231
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper defines and studies a new class of non-stationary random processes constructed from discrete non-decimated wavelets which generalizes the Cramer (Fourier) representation of stationary time series. We define an evolutionary wavelet spectrum (EWS) which quantifies how process power varies locally over time and scale. We show how the EWS may be rigorously estimated by a smoothed wavelet periodogram and how both these quantities may be inverted to provide an estimable time-localized autocovariance. We illustrate our theory with a pedagogical example based on discrete non-decimated Haar wavelets and also a real medical time series example.
引用
收藏
页码:271 / 292
页数:22
相关论文
共 35 条
[1]  
Abry P., 1995, LECT NOTES STAT, P15, DOI DOI 10.1007/978-1-4612-2544-7_2
[2]  
[Anonymous], LECT NOTES STAT, DOI DOI 10.1007/978-1-4612-2544-7_17
[3]  
CAMBANIS S, 1995, IEEE T INFORM THEORY, V41, P628, DOI 10.1109/18.382010
[4]   WAVELET APPROXIMATION OF DETERMINISTIC AND RANDOM SIGNALS - CONVERTENCE PROPERTIES AND RATES [J].
CAMBANIS, S ;
MASRY, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (04) :1013-1029
[5]  
CHENG B, 1996, LECT NOTES STAT, V115, P115
[6]  
Chui C. K., 1997, WAVELETS MATH TOOL S
[7]  
Coifman R. R., 1995, LECT NOTES STAT, V103, P125, DOI [DOI 10.1007/978-1-4612-2544-7_9, DOI 10.1002/CPA.3160410705, 10.1002/cpa.3160410705]
[8]  
Dahlhaus R, 1997, ANN STAT, V25, P1
[9]   SYMMETRIC ITERATIVE INTERPOLATION PROCESSES [J].
DESLAURIERS, G ;
DUBUC, S .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :49-68
[10]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627