Evolution of Dendritic Platinum Nanosheets into Ripening-Resistant Holey Sheets

被引:32
作者
Song, Yujiang [1 ]
Hickner, Michael A. [1 ]
Challa, Sivakumar R. [2 ,3 ]
Dorin, Rachel M. [1 ,2 ,3 ]
Garcia, Robert M. [1 ,2 ,3 ]
Wang, Haorong [1 ,2 ,3 ]
Jiang, Ying-Bing [2 ,3 ]
Li, Peng [2 ,3 ]
Qiu, Yan [1 ,2 ,3 ]
van Swol, Frank [1 ,2 ,3 ]
Medforth, Craig J. [1 ,2 ,3 ]
Miller, James E. [1 ]
Nwoga, Tochi [4 ]
Kawahara, Kazuo [4 ]
Li, Wen [4 ]
Shelnutt, John A. [1 ,5 ]
机构
[1] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87185 USA
[2] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87185 USA
[3] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87185 USA
[4] Toyota Tech Ctr, Ann Arbor, MI 48105 USA
[5] Univ Georgia, Dept Chem, Athens, GA 30602 USA
基金
美国能源部;
关键词
SHAPE-CONTROLLED SYNTHESIS; NANOPARTICLE SHAPE; COLLOIDAL SOLUTION; CATALYTIC-ACTIVITY; NANOCATALYSIS; NANOCRYSTALS; CELLS;
D O I
10.1021/nl803582j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Under electron-beam irradiation, dendritic platinum nanosheets; structurally evolve into metastable "holey" nanosheets. Monte Carlo simulations of this structural transformation agree well with electron microscope images detailing the ripening process. The experiments and simulations show that nanoscale holes of a critical size are persistent and give holey sheets their morphological stability and sustained high surface area. Platinum nanostructures composed of these holey nanosheets exhibit improved durability in electrocatalytic reactions due to their remarkable ripening resistance.
引用
收藏
页码:1534 / 1539
页数:6
相关论文
共 27 条
[1]   Shape-controlled synthesis of colloidal platinum nanoparticles [J].
Ahmadi, TS ;
Wang, ZL ;
Green, TC ;
Henglein, A ;
ElSayed, MA .
SCIENCE, 1996, 272 (5270) :1924-1926
[2]   Influence of the doping method on the sensitivity of Pt-doped screen-printed SnO2 sensors [J].
Bittencourt, C ;
Llobet, E ;
Ivanov, P ;
Correig, X ;
Vilanova, X ;
Brezmes, J ;
Hubalek, J ;
Malysz, K ;
Pireaux, JJ ;
Calderer, J .
SENSORS AND ACTUATORS B-CHEMICAL, 2004, 97 (01) :67-73
[3]  
CHALLA SR, 2009, UNPUB
[4]   Three-way catalyst emissions control technologies for spark-ignition engines - recent trends and future developments [J].
Collins, Neil R. ;
Twigg, Martyn V. .
TOPICS IN CATALYSIS, 2007, 42-43 (1-4) :323-332
[5]   Stability of supported platinum sulfuric acid decomposition catalysts for use in thermochemical water splitting cycles [J].
Ginosar, Daniel M. ;
Petkovic, Lucia M. ;
Glenn, Anne W. ;
Burch, Kyle C. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (04) :482-488
[6]   Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes [J].
Hrapovic, S ;
Liu, YL ;
Male, KB ;
Luong, JHT .
ANALYTICAL CHEMISTRY, 2004, 76 (04) :1083-1088
[7]   Photoelectrochemical water splitting using CuIn1-xGaxS2/CdS thin-film solar cells for hydrogen generation [J].
Jahagirdar, Anant H. ;
Dhere, Neelkanth G. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (15-16) :1488-1491
[8]   ENVIRONMENTAL-IMPACT OF FUEL-CELL TECHNOLOGY [J].
KORDESCH, KV ;
SIMADER, GR .
CHEMICAL REVIEWS, 1995, 95 (01) :191-207
[9]   Facile Synthesis of Highly Faceted Multioctahedral Pt Nanocrystals through Controlled Overgrowth [J].
Lim, Byungkwon ;
Lu, Xianmao ;
Jiang, Majiong ;
Camargo, Pedro H. C. ;
Cho, Eun Chul ;
Lee, Eric P. ;
Xia, Younan .
NANO LETTERS, 2008, 8 (11) :4043-4047
[10]  
Meldrum A, 1997, AM MINERAL, V82, P858