Phosphate transport in Arabidopsis:: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments

被引:599
作者
Shin, H
Shin, HS
Dewbre, GR
Harrison, MJ
机构
[1] Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA
[2] Samuel Roberts Noble Fdn Inc, Ardmore, OK 73401 USA
关键词
roots; mineral nutrition; phosphorus; membrane protein;
D O I
10.1111/j.1365-313X.2004.02161.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Of the mineral nutrients essential for plant growth, phosphorus plays the widest diversity of roles and a lack of phosphorus has profound effects on cellular metabolism. At least eight members of the Arabidopsis Pht1 phosphate (Pi) transporter family are expressed in roots and Pht1;1 and Pht1;4 show the highest transcript levels. The spatial and temporal expression patterns of these two genes show extensive overlap. To elucidate the in planta roles of Pht1;1 and Pht1;4, we identified loss-of-function mutants and also created a double mutant, lacking both Pht1;1 and Pht1;4. Consistent with their spatial expression patterns, membrane location and designation as high-affinity Pi transporters, Pht1;1 and Pht1;4 contribute to Pi transport in roots during growth under low-Pi conditions. In addition, during growth under high-Pi conditions, the double mutant shows a 75% reduction in Pi uptake capacity relative to wildtype. Thus, Pht1;1 and Pht1;4 play significant roles in Pi acquisition from both low- and high-Pi environments.
引用
收藏
页码:629 / 642
页数:14
相关论文
共 74 条
[1]   Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells [J].
Abel, S ;
Nürnberger, T ;
Ahnert, V ;
Krauss, GJ ;
Glund, K .
PLANT PHYSIOLOGY, 2000, 122 (02) :543-552
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]  
Ames B. N., 1966, METHOD ENZYMOL, V8, P115, DOI DOI 10.1016/0076-6879(66)08014-5
[4]  
[Anonymous], MINERAL NUTR PLANTS
[5]  
Arnon DI, 1940, SOIL SCI, V50, P463
[6]   THE ARABIDOPSIS RIBONUCLEASE GENE RNS1 IS TIGHTLY CONTROLLED IN RESPONSE TO PHOSPHATE LIMITATION [J].
BARIOLA, PA ;
HOWARD, CJ ;
TAYLOR, CB ;
VERBURG, MT ;
JAGLAN, VD ;
GREEN, PJ .
PLANT JOURNAL, 1994, 6 (05) :673-685
[7]  
Bieleski R. L., 1983, Inorganic plant nutrition, P422
[8]   PHOSPHATE POOLS, PHOSPHATE TRANSPORT, AND PHOSPHATE AVAILABILITY [J].
BIELESKI, RL .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1973, 24 :225-252
[9]  
Bucher M, 2001, J PLANT NUTR SOIL SC, V164, P209, DOI 10.1002/1522-2624(200104)164:2<209::AID-JPLN209>3.0.CO
[10]  
2-F