Magnetotransport properties of a percolating network of magnetite crystals embedded in a glass-ceramic matrix

被引:5
作者
Allia, Paolo [1 ]
Bretcanu, Oana [1 ]
Verne, Enrica [1 ]
Celegato, Federica [2 ]
Coisson, Marco [2 ]
Tiberto, Paola [2 ]
Vinai, Franco [2 ]
Spizzo, Federico [3 ]
Tamisari, Melissa [3 ]
机构
[1] Politecn Torino, Dept Mat Sci & Chem Engn, I-10129 Turin, Italy
[2] INRIM, Electromagnetism Div, I-10135 Turin, Italy
[3] Univ Ferrara, Dept Phys, CNISM, I-44100 Ferrara, Italy
关键词
calcium compounds; crystal morphology; ferrimagnetic materials; ferromagnetic materials; glass ceramics; iron compounds; magnetisation; magnetoresistance; metal-insulator transition; phosphorus compounds; silicon compounds; sodium compounds; VERWEY TRANSITION; ELECTRICAL-CONDUCTIVITY; GIANT MAGNETORESISTANCE; FE3O4; COPRECIPITATION; TRANSPORT;
D O I
10.1063/1.3110202
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electrical resistance, magnetization, and magnetoresistance have been measured as functions of temperature from 50 to 300 K on three ferromagnetic glass ceramics containing different magnetite crystals by preparing conditions and crystal morphology. Magnetite crystals form a percolating network for electrons with weak links at crystal-crystal contact points. All samples exhibit a broadened Verwey transition, peaked at temperatures lower than measured in bulk stoichiometric magnetite. The negative magnetoresistance ratio increases in absolute value with sample cooling from RT down to the Verwey temperature and decreases on further cooling. This behavior indicates that electron transfer between magnetite crystals is achieved through spin-dependent and spin-independent channels acting in parallel. Magnetic correlation states for spins at contact points between magnetite crystals are studied by plotting the magnetoresistance as a function of reduced magnetization. The transition from activated hopping to variable range hopping affects the magnetoresistance versus magnetization curves.
引用
收藏
页数:8
相关论文
共 41 条
[1]   MAGNETOCRYSTALLINE ANISOTROPY OF LOW-TEMPERATURE PHASE OF MAGNETITE [J].
ABE, K ;
MIYAMOTO, Y ;
CHIKAZUMI, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1976, 41 (06) :1894-1902
[2]   Magnetic properties and giant magnetoresistance of melt-spun granular Cu-100-x-Co-x alloys [J].
Allia, P ;
Knobel, M ;
Tiberto, P ;
Vinai, F .
PHYSICAL REVIEW B, 1995, 52 (21) :15398-15411
[3]   Magnetoresistance and nanoscopic magnetic coherence in some frustrated ferromagnets [J].
Allia, P ;
Coisson, M ;
Moya, J ;
Selvaggini, V ;
Tiberto, P ;
Vinai, F .
PHYSICAL REVIEW B, 2003, 67 (17)
[4]   TEMPERATURE-DEPENDENCE AND FIELD-DEPENDENCE OF HOPPING CONDUCTION IN DISORDERED SYSTEMS [J].
APSLEY, N ;
HUGHES, HP .
PHILOSOPHICAL MAGAZINE, 1974, 30 (05) :963-972
[5]   Study of pulsed laser deposited magnetite thin film [J].
Bohra, Murtaza ;
Venkataramani, N. ;
Prasad, Shiva ;
Kumar, N. ;
Misra, D. S. ;
Sahoo, S. C. ;
Krishnan, R. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :2242-2244
[6]  
Brabers V., 1995, Handbook of Magnetic Materials, V8, P189, DOI DOI 10.1016/S1567-2719(05)80032-0
[7]   The influence of crystallised Fe3O4 on the magnetic properties of coprecipitation-derived ferrimagnetic glass-ceramics [J].
Bretcanu, O ;
Spriano, S ;
Verné, E ;
Cöisson, M ;
Tiberto, P ;
Allia, P .
ACTA BIOMATERIALIA, 2005, 1 (04) :421-429
[8]   Magnetoresistance of magnetite [J].
Coey, JMD ;
Berkowitz, AE ;
Balcells, L ;
Putris, FF ;
Parker, FT .
APPLIED PHYSICS LETTERS, 1998, 72 (06) :734-736
[9]   Magnetoresistance of chromium dioxide powder compacts [J].
Coey, JMD ;
Berkowitz, AE ;
Balcells, L ;
Putris, FF ;
Barry, A .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3815-3818
[10]  
Cullity B.D., 1972, INTRO MAGNETIC MAT