Mesenchymal stem cells in osteoarthritis

被引:60
作者
Luyten, FP [1 ]
机构
[1] Katholieke Univ Leuven Hosp, Dept Rheumatol, B-3000 Louvain, Belgium
关键词
mesenchymal stem cells; cartilage; bone; joint homeostasis; tissue repair;
D O I
10.1097/01.bor.0000130284.64686.63
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of review Accumulating evidence indicates that every tissue contains stem cells. Our understanding of the biology of stem cells reveals that these cell populations have a critical role in the homeostasis and repair of tissues. Besides the local stem cell niches, additional compartments in the body such as the bone marrow may serve as reservoirs for stem cell populations. On more extensive tissue damage, and guided by local repair responses, "reparative" cell populations are mobilized from more distant stem cell reservoirs and migrate to the site of injury, thereby contributing in many aspects of local tissue repair. Recent findings Osteoarthritis has long been regarded as an imbalance between destructive and reparative processes. The lack of repair of the weight-bearing articular cartilage and the associated subchondral bone changes are considered of critical importance in the progression of the disease. Recent findings indicate a depletion and/or functional alteration of mesenchymal stem cell populations in osteoarthritis. These preliminary data suggest that in joint diseases such as osteoarthritis, it is of importance to investigate further the involvement of the stem cell pool in the mechanisms contributing to joint homeostasis and driving disease progression. Summary In view of the emerging body of evidence pointing to a potential therapeutic utility of stem cell technology, it is not surprising that local delivery of mesenchymal stem cells has been explored as a therapeutic approach in animal models of osteoarthritis.
引用
收藏
页码:599 / 603
页数:5
相关论文
共 53 条
[1]   Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes [J].
Barbero, A ;
Ploegert, S ;
Heberer, M ;
Martin, I .
ARTHRITIS AND RHEUMATISM, 2003, 48 (05) :1315-1325
[2]  
BENTLEY G, 2004, J BONE JOINT SURG AM, V88, P455
[3]   TREATMENT OF DEEP CARTILAGE DEFECTS IN THE KNEE WITH AUTOLOGOUS CHONDROCYTE TRANSPLANTATION [J].
BRITTBERG, M ;
LINDAHL, A ;
NILSSON, A ;
OHLSSON, C ;
ISAKSSON, O ;
PETERSON, L .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (14) :889-895
[4]  
Brittberg M, 2001, CLIN ORTHOP RELAT R, pS337
[5]   Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo [J].
De Bari, C ;
Dell'Accio, F ;
Luyten, FP .
ARTHRITIS AND RHEUMATISM, 2004, 50 (01) :142-150
[6]   Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane [J].
De Bari, C ;
Dell'Accio, F ;
Vandenabeele, F ;
Vermeesch, JR ;
Raymackcrs, JM ;
Luyten, FP .
JOURNAL OF CELL BIOLOGY, 2003, 160 (06) :909-918
[7]  
De Bari C, 2001, ARTHRITIS RHEUM-US, V44, P1928, DOI 10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO
[8]  
2-P
[9]   Microenvironment and phenotypic stability specify tissue formation by human articular cartilage-derived cells in vivo [J].
Dell'Accio, F ;
De Bari, C ;
Luyten, FP .
EXPERIMENTAL CELL RESEARCH, 2003, 287 (01) :16-27
[10]  
Dell'Accio F, 2001, ARTHRITIS RHEUM-US, V44, P1608, DOI 10.1002/1529-0131(200107)44:7<1608::AID-ART284>3.0.CO