Multiobjective genetic algorithms applied to solve optimization problems

被引:86
作者
Dias, AHF [1 ]
de Vasconcelos, JA
机构
[1] Acesita Co, BR-180000 Timoteo, Minas Geras, Brazil
[2] Univ Fed Minas Gerais, Dept Elect Engn, BR-31270901 Belo Horizonte, MG, Brazil
关键词
electromagnetics; multiobjective evolutionary algorithms; nondominated sorting genetic algorithms;
D O I
10.1109/20.996290
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we discuss multiobjective optimization problems solved by evolutionary algorithms. We present the nondominated sorting genetic algorithm (NSGA) to solve this class of problems and its performance is analyzed in comparing its results with those obtained with four others algorithms. Finally, the NSGA is applied to solve the TEAM benchmark problem 22 without considering the quench physical condition to map the Pareto-optimum front. The results in both analytical and electromagnetic problems show its effectiveness.
引用
收藏
页码:1133 / 1136
页数:4
相关论文
共 9 条
  • [1] [Anonymous], 1989, GENETIC ALGORITHM SE
  • [2] [Anonymous], DESIGN OPTIMIZATION
  • [3] FONSECA CM, 1993, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P416
  • [4] Jeffrey H., 1994, P 1 IEEE C EV COMP, V1, P82, DOI [DOI 10.1109/ICEC.1994.350037, 10.1109/ICEC.1994.350037]
  • [5] Niching genetic algorithms for optimization in electromagnetics - I. Fundamentals
    Sareni, B
    Krahenbuhl, L
    Nicolas, A
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 2984 - 2987
  • [6] Schaffer J. D., 1984, THESIS VANDERBILT U
  • [7] SRINIVAS N, 1993, MULTIOBJECTIVE OPTIM
  • [8] Sensitivity analysis for optimization problems solved by stochastic methods
    Takahashi, RHC
    Ramírez, JA
    Vasconcelos, JA
    Saldanha, RR
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (05) : 3566 - 3569
  • [9] Zitzler E., 1999, EVOLUTIONARY ALGORIT