Calculating first-order sensitivity measures: A benchmark of some recent methodologies

被引:38
作者
Gatelli, D. [1 ]
Kucherenko, S. [2 ]
Ratto, M. [1 ]
Tarantola, S. [1 ]
机构
[1] Commiss European Communities, Joint Res Ctr, Inst Protect & Secur Citizen, I-21027 Ispra, VA, Italy
[2] Univ London Imperial Coll Sci Technol & Med, London, England
基金
英国工程与自然科学研究理事会;
关键词
Global sensitivity analysis; Quasi Monte Carlo methods; Sobol' sensitivity indices; Sobol' method with improved formulas; Random balance designs; State-dependent parameter modelling; COMPONENT FUNCTIONS; RS-HDMR; INDEXES;
D O I
10.1016/j.ress.2008.03.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work compares three different global sensitivity analysis techniques, namely the state-dependent parameter (SDP) modelling, the random balance designs, and the improved formulas of the Sobol' sensitivity indices. These techniques are not yet commonly known in the literature. Strengths and weaknesses of each technique in terms of efficiency and computational cost are highlighted, thus enabling the user to choose the more suitable method depending on the computational model analysed. Two test functions proposed in the literature are considered. Computational costs and convergence rates for each function are compared and discussed. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1212 / 1219
页数:8
相关论文
共 15 条
[1]  
Caflisch R. E., 1997, J. Comput. Finance, V1, P27, DOI DOI 10.21314/JCF.1997.005
[2]   NON-LINEAR SENSITIVITY ANALYSIS OF MULTI-PARAMETER MODEL SYSTEMS [J].
CUKIER, RI ;
LEVINE, HB ;
SHULER, KE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 26 (01) :1-42
[3]  
KUCHERENKO S, 2007, P 5 INT C SENS AN MO
[4]   Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions [J].
Li, GY ;
Hu, JS ;
Wang, SW ;
Georgopoulos, PG ;
Schoendorf, J ;
Rabitz, H .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (07) :2474-2485
[5]  
Li GY, 2002, J PHYS CHEM A, V106, P8721, DOI 10.1021/jpO14567t
[6]   Probabilistic sensitivity analysis of complex models: a Bayesian approach [J].
Oakley, JE ;
O'Hagan, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 :751-769
[7]   State dependent parameter metamodelling and sensitivity analysis [J].
Ratto, Marco ;
Pagano, Andrea ;
Young, Peter .
COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (11) :863-876
[8]   About the use of rank transformation in sensitivity analysis of model output [J].
Saltelli, A ;
Sobol, IM .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 1995, 50 (03) :225-239
[9]   Making best use of model evaluations to compute sensitivity indices [J].
Saltelli, A .
COMPUTER PHYSICS COMMUNICATIONS, 2002, 145 (02) :280-297
[10]  
Saltelli A., 2004, SENSITIVITY ANAL PRA