A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator

被引:40
作者
Bitouzé, D
Laurent, B
Massart, P
机构
[1] Univ Littoral Cote Opale, LMPA Joseph Liouville, Ctr Univ Mivoix, F-62228 Calais, France
[2] Univ Paris 11, F-91405 Orsay, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 1999年 / 35卷 / 06期
关键词
Kaplan-Meier estimator; censored data; exponential inequality; law of iterated logarithm; empirical process;
D O I
10.1016/S0246-0203(99)00112-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a new exponential inequality for the Kaplan-Meier estimator of a distribution function in a right censored data model. This inequality is of the same type as the Dvoretzky-Kiefer-Wolfowitz inequality for the empirical distribution function in the non-censored case. Our approach is based on Duhamel equation which allows to use empirical process theory. (C) Elsevier, Paris.
引用
收藏
页码:735 / 763
页数:29
相关论文
共 27 条
[1]   LAW OF THE ITERATED LOGARITHM FOR SET-INDEXED PARTIAL SUM PROCESSES WITH FINITE VARIANCE [J].
BASS, RF .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (04) :591-608
[2]   RATES OF CONVERGENCE FOR MINIMUM CONTRAST ESTIMATORS [J].
BIRGE, L ;
MASSART, P .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 97 (1-2) :113-150
[3]   Minimum contrast estimators on sieves: exponential bounds and rates of convergence [J].
Birge, L ;
Massart, P .
BERNOULLI, 1998, 4 (03) :329-375
[4]  
BITOUZE D, 1995, THESIS U PARIS 11 FR
[5]  
BRESLOW N, 1974, ANN STAT, V11, P49
[6]   LARGE DEVIATIONS FOR CENSORED-DATA [J].
DINWOODIE, IH .
ANNALS OF STATISTICS, 1993, 21 (03) :1608-1620
[7]   JUSTIFICATION AND EXTENSION OF DOOBS HEURISTIC APPROACH TO THE KOLMOGOROV-SMIRNOV THEOREMS [J].
DONSKER, MD .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (02) :277-281
[8]  
DOUKHAN P, 1995, ANN I H POINCARE-PR, V31, P393
[9]   CENTRAL LIMIT-THEOREMS FOR EMPIRICAL MEASURES [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1978, 6 (06) :899-929
[10]   ASYMPTOTIC MINIMAX CHARACTER OF THE SAMPLE DISTRIBUTION FUNCTION AND OF THE CLASSICAL MULTINOMIAL ESTIMATOR [J].
DVORETZKY, A ;
KIEFER, J ;
WOLFOWITZ, J .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (03) :642-669