Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues

被引:315
作者
DeZwaan, TM [1 ]
Carroll, AM [1 ]
Valent, B [1 ]
Sweigard, JA [1 ]
机构
[1] Dupont Co, Dupont Agr Enterprise, Wilmington, DE 19880 USA
关键词
D O I
10.1105/tpc.11.10.2013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutagenesis of Magnaporthe grisea strain 4091-5-8 led to the identification of PTH11, a pathogenicity gene predicted to encode a novel transmembrane protein. We localized a Pth11-green fluorescent protein fusion to the cell membrane and vacuoles. pth11 mutants of strain 4091-5-8 are nonpathogenic due to a defect in appressorium differentiation. This defect is reminiscent of wild-type strains on poorly inductive surfaces; conidia germinate and undergo early differentiation events, but appressorium maturation is impaired. Functional appressoria are formed by pth11 mutants at 10 to 15% of wild-type frequencies, suggesting that the protein encoded by PTH11 (Pth11p) is not required for appressorium morphogenesis but is involved in host surface recognition. We assayed Pth11p function in multiple M. grisea strains. These experiments indicated that Pth11p can activate appressorium differentiation in response to inductive surface cues and repress differentiation on poorly inductive surfaces and that multiple signaling pathways mediate differentiation. PTH11 genes from diverged M. grisea strains complemented the 4091-5-8 pth11 mutant, indicating functional conservation. Exogenous activation of cellular signaling suppressed pth11 defects. These findings suggest that Pth11p functions at the cell cortex as an upstream effector of appressorium differentiation in response to surface cues.
引用
收藏
页码:2013 / 2030
页数:18
相关论文
共 50 条
[1]   Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea [J].
Adachi, K ;
Hamer, JE .
PLANT CELL, 1998, 10 (08) :1361-1373
[2]  
[Anonymous], 1975, PRINCIPLES PLANT INF
[3]  
ANTONSSON B, 1994, J BIOL CHEM, V269, P16821
[4]   MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition [J].
Beckerman, JL ;
Ebbole, DJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1996, 9 (06) :450-456
[5]   Molecular tinkering of G protein-coupled receptors: an evolutionary success [J].
Bockaert, J ;
Pin, JP .
EMBO JOURNAL, 1999, 18 (07) :1723-1729
[6]  
BOURETT T, 1990, CAN J BOT, V69, P329
[7]  
Carroll A.M., 1994, FUNGAL GENET NEWSL, V41, P22, DOI [DOI 10.4148/1941-4765.1367, 10.4148/19414765.1367, DOI 10.4148/19414765.1367]
[8]   The adenylate cyclase gene MAC1 of Magnaporthe grisea controls Appressorium formation and other aspects of growth and development [J].
Choi, WB ;
Dean, RA .
PLANT CELL, 1997, 9 (11) :1973-1983
[9]  
CRAWFORD MS, 1986, GENETICS, V114, P1111
[10]   Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea [J].
Gilbert, RD ;
Johnson, AM ;
Dean, RA .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1996, 48 (05) :335-346