Prediction of Electron Energies in Metal Oxides

被引:105
作者
Walsh, Aron [1 ]
Butler, Keith T.
机构
[1] Univ Bath, Ctr Sustainable Chem Technol, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
DENSITY-FUNCTIONAL THEORY; BAND OFFSETS; DEFORMATION POTENTIALS; II-VI; SURFACE; SEMICONDUCTORS; GAP; ALIGNMENT; ELECTRONEGATIVITY; CONTINUUM;
D O I
10.1021/ar400115x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability to predict energy levels in metal oxides is paramount to developing optical and electrical properties, dictating for which kinds of chemistry and physics a useful materials, such as in the development of water photolysis catalysts and efficient photovoltaic cells. The binding energy of electrons in materials encompasses a wealth of information concerning their physicochemistry. The energies control the optical and electrical properties, dictating for which kinds of chemistry and physics a particular material is useful. Scientists have developed theories and models for electron energies in a variety of chemical systems over the past century. However, the prediction of quantitative energy levels in new materials remains a major challenge. This issue is of particular importance in metal oxide research, where novel chemistries have opened the possibility of a wide range of tailored systems with applications in important fields including light-emitting diodes, energy efficient glasses, and solar cells. In this Account, we discuss the application of atomistic modeling techniques, covering the spectrum from classical to quantum descriptions, to explore the alignment of electron energies between materials. We present a number of paradigmatic examples, including a series of oxides (ZnO, In2O3, and Cu2O). Such calculations allow the determination of a "band alignment diagram" between different materials and can facilitate the prediction of the optimal chemical composition of an oxide for use in a given application. Throughout this Account, we consider direct computational solutions in the context of heuristic models, which are used to relate the fundamental theory to experimental observations. We review a number of techniques that have been commonly applied in the study of electron energies in solids. These models have arisen from different answers to the same basic question, coming from solid-state chemistry and physics perspectives. We highlight common factors, as well as providing a critical appraisal of the strengths and weaknesses of each, emphasizing the difficulties in translating concepts from molecular to solid-state systems. Finally, we stress the need for a universal description of the alignment of band energies for materials design from first-principles. By demonstrating the applicability and challenges of using theory to calculate the relevant quantities, as well as impressing the necessity of a clarification and unification of the descriptions, we hope to provide a stimulus for the continued development of this field.
引用
收藏
页码:364 / 372
页数:9
相关论文
共 83 条
  • [1] Alfè D, 2000, INT J QUANTUM CHEM, V77, P871, DOI 10.1002/(SICI)1097-461X(2000)77:5<871::AID-QUA8>3.0.CO
  • [2] 2-3
  • [3] Band offsets at semiconductor-oxide interfaces from hybrid density-functional calculations
    Alkauskas, Audrius
    Broqvist, Peter
    Devynck, Fabien
    Pasquarello, Alfredo
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (10)
  • [4] GERMANIUM-GALLIUM ARSENIDE HETEROJUNCTIONS
    ANDERSON, RL
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1960, 4 (03) : 283 - 287
  • [5] [Anonymous], 1940, CHEM ED, DOI DOI 10.1021/ED018P249.1
  • [6] A photoactive titanate with a stereochemically active Sn lone pair: Electronic and crystal structure of Sn2TiO4 from computational chemistry
    Burton, Lee A.
    Walsh, Aron
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2012, 196 : 157 - 160
  • [7] PREDICTION OF FLATBAND POTENTIALS AT SEMICONDUCTOR-ELECTROLYTE INTERFACES FROM ATOMIC ELECTRONEGATIVITIES
    BUTLER, MA
    GINLEY, DS
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (02) : 228 - 232
  • [8] ACOUSTIC DEFORMATION POTENTIALS AND HETEROSTRUCTURE BAND OFFSETS IN SEMICONDUCTORS
    CARDONA, M
    CHRISTENSEN, NE
    [J]. PHYSICAL REVIEW B, 1987, 35 (12): : 6182 - 6194
  • [9] Computational screening of perovskite metal oxides for optimal solar light capture
    Castelli, Ivano E.
    Olsen, Thomas
    Datta, Soumendu
    Landis, David D.
    Dahl, Soren
    Thygesen, Kristian S.
    Jacobsen, Karsten W.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) : 5814 - 5819
  • [10] Advances in computational studies of energy materials
    Catlow, C. R. A.
    Guo, Z. X.
    Miskufova, M.
    Shevlin, S. A.
    Smith, A. G. H.
    Sokol, A. A.
    Walsh, A.
    Wilson, D. J.
    Woodley, S. M.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1923): : 3379 - 3456