Optimization of the chemical vapor deposition process for carbon nanotubes fabrication

被引:35
作者
Grujicic, M
Cao, G
Gersten, B
机构
[1] Clemson Univ, Dept Engn Mech, Program Mat Sci & Engn, Clemson, SC 29634 USA
[2] USA, Res Lab, WMRD, AMSRL,WM,MD, Aberdeen Proving Ground, MD 21005 USA
关键词
carbon nanotubes; chemical vapor deposition; genetic algorithm;
D O I
10.1016/S0169-4332(02)00892-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A coupled boundary-layer laminar-flow hydrodynamic, heat-transfer, gas-phase chemistry and surface chemistry model is developed to analyze, at the reactor length-scale, chemical vapor deposition (CVD) of carbon nanotubes from a gas mixture consisting of methane (carbon precursor) and hydrogen (carrier gas) in the presence of cobalt catalytic particles in a cylindrical reactor. The model allows determination of the gas-phase fields for temperature, velocity, and species concentration as well as the surface species coverages, the carbon nanotubes growth rate and the deposition rate of amorphous carbon. Experimentally determined carbon deposition rates and carbon nanotubes growth rates at different processing conditions are used to validate the model. The model is also coupled with the Genetic Algorithm to determine the process parameters (the gas temperature and velocity at the reactor inlet, the reactor-wall temperature, the pressure, and the mole fraction of methane in the gas mixture) which maximize the carbon nanourbes yield while minimizing the amount of deposited amorphous carbon. (C) 2002 Elsevier Science B.V All rights reserved.
引用
收藏
页码:90 / 106
页数:17
相关论文
共 35 条
[1]   Continuous production of aligned carbon nanotubes: a step closer to commercial realization [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Derbyshire, F ;
Qian, D ;
Fan, X ;
Dickey, EC ;
Chen, J .
CHEMICAL PHYSICS LETTERS, 1999, 303 (5-6) :467-474
[2]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[3]  
BRENNAN KE, 1989, NUMERICAL SOLUTION I
[4]  
BUCKENSTEIN E, 1998, CARBON, V36, P275
[5]  
Charlier JC, 1997, SCIENCE, V275, P646, DOI 10.1126/science.275.5300.647
[6]   Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J].
Collins, PG ;
Bradley, K ;
Ishigami, M ;
Zettl, A .
SCIENCE, 2000, 287 (5459) :1801-1804
[7]   ANALYSIS OF DIAMOND GROWTH IN SUBATMOSPHERIC DC PLASMA-GUN REACTORS [J].
COLTRIN, ME ;
DANDY, DS .
JOURNAL OF APPLIED PHYSICS, 1993, 74 (09) :5803-5820
[8]   A MATHEMATICAL-MODEL OF THE COUPLED FLUID-MECHANICS AND CHEMICAL-KINETICS IN A CHEMICAL VAPOR-DEPOSITION REACTOR [J].
COLTRIN, ME ;
KEE, RJ ;
MILLER, JA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1984, 131 (02) :425-434
[9]   A MATHEMATICAL-MODEL OF SILICON CHEMICAL VAPOR-DEPOSITION - FURTHER REFINEMENTS AND THE EFFECTS OF THERMAL-DIFFUSION [J].
COLTRIN, ME ;
KEE, RJ ;
MILLER, JA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1986, 133 (06) :1206-1213
[10]   Nanotubes as nanoprobes in scanning probe microscopy [J].
Dai, HJ ;
Hafner, JH ;
Rinzler, AG ;
Colbert, DT ;
Smalley, RE .
NATURE, 1996, 384 (6605) :147-150