Residue 259 in protein-tyrosine phosphatase PTPlB and PTPα determines the flexibility of glutamine 262

被引:12
作者
Peters, GH
Iversen, LF
Andersen, HS
Moller, NPH
Olsen, OH
机构
[1] Tech Univ Denmark, Ctr Biomembrane Phys, MEMPHYS, Dept Chem, DK-2800 Lyngby, Denmark
[2] Novo Nordisk AS, Prot Chem, DK-2880 Bagsvaerd, Denmark
[3] Novo Nordisk AS, Signal Transduct, DK-2880 Bagsvaerd, Denmark
[4] Novo Nordisk Pk, Med Chem Res 2, DK-2760 Malov, Denmark
[5] Novo Nordisk Pk, Haemostasis Biochem, DK-2760 Malov, Denmark
关键词
D O I
10.1021/bi0498757
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To study the flexibility of the substrate-binding site and in particular of Gln262, we have performed adiabatic conformational search and molecular dynamics simulations on the crystal structure of the catalytic domain of wild-type protein-tyrosine phosphatase (PTP) 1B, a mutant PTP1B(R47V),(D48N),(M258C),(G259Q), and a model of the catalytically active form of PTPalpha. For each molecule two cases were modeled: the Michaelis-Menten complex with the substrate analogue p-nitrophenyl phosphate (p-PNPP) bound to the active site and the cysteine-phosphor complex, each corresponding to the first and second step of the phosphate hydrolysis. Analyses of the trajectories revealed that in the cysteine-phosphor complex of PTP1B, Gln262 oscillates freely between the bound phosphate group and Gly259 frequently forming, as observed in the crystal structure, a hydrogen bond with the backbone oxygen of Gly259. In contrast, the movement of Gln262 is restricted in PTPalpha and the mutant due to interactions with Gln259 reducing the frequency of the oscillation of Gln262 and thereby delaying the positioning of this residue for the second step in the catalysis, as reflected experimentally by a reduction in k(cat). Additionally, in the simulation with the Michaelis-Menten complexes, we found that a glutamine in position 259 induces steric hindrance by pushing the Gln262 side chain further toward the substrate and thereby negatively affecting K-m as indicated by kinetic studies. Detailed analysis of the water structure around Gln262 and the active site Cys215 reveals that the probability of finding a water molecule correctly positioned for catalysis is much larger in PTP1B than in PTP1B(R47V),(D48N),(M258C),(G259Q) and PTPalpha, in accordance with experiments.
引用
收藏
页码:8418 / 8428
页数:11
相关论文
共 52 条
[1]   Structural and evolutionary relationships among protein tyrosine phosphatase domains [J].
Andersen, JN ;
Mortensen, OH ;
Peters, GH ;
Drake, PG ;
Iversen, LF ;
Olsen, OH ;
Jansen, PG ;
Andersen, HS ;
Tonks, NK ;
Moller, NPH .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (21) :7117-7136
[2]   The structure and mechanism of protein phosphatases: Insights into catalysis and regulation [J].
Barford, D ;
Das, AK ;
Egloff, MP .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1998, 27 :133-164
[3]   Protein phosphatases [J].
Barford, D .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1995, 5 (06) :728-734
[4]   CRYSTAL-STRUCTURE OF HUMAN PROTEIN-TYROSINE-PHOSPHATASE 1B [J].
BARFORD, D ;
FLINT, AJ ;
TONKS, NK .
SCIENCE, 1994, 263 (5152) :1397-1404
[5]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[6]   Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization [J].
Bilwes, AM ;
denHertog, J ;
Hunter, T ;
Noel, JP .
NATURE, 1996, 382 (6591) :555-559
[7]   Dynamics of the interaction between the insulin receptor and protein tyrosine-phosphatase 1B in living cells [J].
Boute, N ;
Boubekeur, S ;
Lacasa, D ;
Issad, T .
EMBO REPORTS, 2003, 4 (03) :313-319
[8]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[9]  
Dadke Shrikrishna, 2003, Current Drug Targets - Immune Endocrine and Metabolic Disorders, V3, P299
[10]   Protein tyrosine phosphatases: mechanisms of catalysis and regulation [J].
Denu, JM ;
Dixon, JE .
CURRENT OPINION IN CHEMICAL BIOLOGY, 1998, 2 (05) :633-641