CAViaR: Conditional autoregressive value at risk by regression quantiles

被引:1236
作者
Engle, RF
Manganelli, S
机构
[1] NYU, Stern Sch Business, New York, NY 10012 USA
[2] European Cent Bank, DG Res, D-60311 Frankfurt, Germany
关键词
nonlinear regression quantile; risk management; specification testing;
D O I
10.1198/073500104000000370
中图分类号
F [经济];
学科分类号
02 ;
摘要
Value at risk (VaR) is the standard measure of market risk used by financial institutions. Interpreting the VaR as the quantile of future portfolio values conditional on current information, the conditional autoregressive value at risk (CAViaR) model specifies the evolution of the quantile over time using an autoregressive process and estimates the parameters with regression quantiles. Utilizing the criterion that each period the probability of exceeding the VaR must be independent of all the past information, we introduce a new test of model adequacy, the dynamic quantile test. Applications to real data provide empirical support to this methodology.
引用
收藏
页码:367 / 381
页数:15
相关论文
共 39 条
[1]   2 STAGE LEAST ABSOLUTE DEVIATIONS ESTIMATORS [J].
AMEMIYA, T .
ECONOMETRICA, 1982, 50 (03) :689-711
[2]  
[Anonymous], 1991, PROC 5 INT S EC THEO
[3]  
[Anonymous], J TIME SERIES ANAL
[4]  
*BASL COMM BANK SU, 1996, AM CAP ACC INC MARK
[5]  
Bloomfield P., 1983, LEAST ABSOLUTE DEVIA
[6]  
Boudoukh J., 1998, Risk, V11, P64
[7]   ESTIMATING THE ASYMPTOTIC COVARIANCE-MATRIX FOR QUANTILE REGRESSION-MODELS - A MONTE-CARLO STUDY [J].
BUCHINSKY, M .
JOURNAL OF ECONOMETRICS, 1995, 68 (02) :303-338
[8]   An alternative estimator for the censored quantile regression model [J].
Buchinsky, M ;
Hahn, JY .
ECONOMETRICA, 1998, 66 (03) :653-671
[9]  
CHERNOZHUKOV V, 1999, UNPUB SPECIFICATION
[10]  
CHERNOZHUKOV V, 2000, 0121 MIT DEP EC