Constrained multiobjective games in general topological space

被引:12
作者
Ding, XP [1 ]
机构
[1] Sichuan Normal Univ, Dept Math, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
constrained multiobjective game; quasi-equilibrium problem; weighted Nash equilibria; Pareto equilibria; topological space;
D O I
10.1016/S0898-1221(99)00330-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study a new class of constrained multiobjective games in general noncompact topological space. By employing an existence theorem of quasi-equilibrium problems due to this author, several existence theorems of weighted Nash equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact topological spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literature. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:23 / 30
页数:8
相关论文
共 20 条
[1]  
[Anonymous], INT J GAME THEORY
[2]  
[Anonymous], 1996, APPL MATH MECH-ENGL, DOI DOI 10.1007/BF00127184
[3]  
Aubin J. P, 1982, MATH METHODS GAMES E, V2
[4]  
Aubin J.-P., 1984, Differential Inclusions
[5]   DOMINATION STRUCTURES AND MULTICRITERIA PROBLEMS IN N-PERSON GAMES [J].
BERGSTRESSER, K ;
YU, PL .
THEORY AND DECISION, 1977, 8 (01) :5-48
[6]  
Borm PEM., 1989, METHODS OPER RES, V60, P303
[7]  
CHOSE D, 1989, J OPTIM THEORY APPL, V63, P167
[8]  
DING XP, 1998, J SICHUAN NORMAL U, V21, P22
[9]  
DING XP, IN PRESS APPL MATH L
[10]  
DING XP, 1991, APPL MATH MECH, V12, P639