New discrete model Boltzmann equations for arbitrary partitions of the velocity space

被引:2
作者
Reiterer, P [1 ]
Reitshammer, C [1 ]
Schürrer, F [1 ]
Hanser, F [1 ]
Eitzenberger, T [1 ]
机构
[1] Graz Tech Univ, Inst Theoret Phys, A-8010 Graz, Austria
关键词
kinetic theory; Boltzmann equation; discrete-velocity models;
D O I
10.1023/A:1018643409890
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Modified discrete Boltzmann equations ibr arbitrary partitions of the velocity space are established. The new equations can be derived From the continuous Boltzmann equation and are a generalization of previous discrete-velocity models. They preserve mass, momentum. and energy, and an H-theorem holds. The new model equations are tested by comparing their solutions with the analytical ones of the continuous Boltzmann equation for the Krook-Wu and the very hard particle models.
引用
收藏
页码:419 / 440
页数:22
相关论文
共 25 条
[1]  
Bellomo N., 1991, Reviews in Mathematical Physics, V3, P137, DOI 10.1142/S0129055X91000060
[2]  
Bobylev A. V., 1976, Soviet Physics - Doklady, V20, P822
[3]  
BOBYLEV AV, 1995, CR ACAD SCI I-MATH, V320, P639
[4]  
BOBYLEV AV, 1995, RAREFIED GAS DYN, V19, P857
[5]   SHOCK STRUCTURE IN A SIMPLE DISCRETE VELOCITY GAS [J].
BROADWELL, JE .
PHYSICS OF FLUIDS, 1964, 7 (08) :1243-1247
[6]  
Broadwell JE, 1964, J FLUID MECH, V19, P401, DOI 10.1017/S0022112064000817
[7]  
Buet C., 1996, Transport Theory and Statistical Physics, V25, P33, DOI 10.1080/00411459608204829
[8]  
CABANNES H, 1975, J MECANIQUE, V14, P705
[9]  
CABANNES H., 1980, The discrete Boltzmann equation
[10]   Temperature, entropy, and kinetic theory [J].
Cercignani, C .
JOURNAL OF STATISTICAL PHYSICS, 1997, 87 (5-6) :1097-1109