The SIN3/RPD3 deacetylase complex is essential for G2 phase cell cycle progression and regulation of SMRTER corepressor levels

被引:60
作者
Pile, LA
Schlag, EM
Wassarman, DA
机构
[1] Univ Wisconsin, Sch Med, Dept Pharmacol, Madison, WI 53706 USA
[2] NICHHD, Cell Biol & Metab Branch, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1128/MCB.22.14.4965-4976.2002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The SIN3 corepressor and RPD3 histone deacetylase are components of the evolutionarily conserved SIN3/RPD3 transcriptional repression complex. Here we show that the SIN3/RPD3 complex and the corepressor SMRTER are required for Drosophila G(2) phase cell cycle progression. Loss of the SIN3, but not the p55, SAP18, or SAP30, component of the SIN3/RPD3 complex by RNA interference (RNAi) causes a cell cycle delay prior to initiation of mitosis. Loss of RPD3 reduces the growth rate of cells but does not cause a distinct cell cycle defect, suggesting that cells are delayed in multiple phases of the cell cycle, including G(2). Thus, the role of the SIN3/RPD3 complex in G(2) phase progression appears to be independent of p55, SAP18, and SAP30. SMRTER protein levels are reduced in SIN3 and RPD3 RNAi cells, and loss of SMRTER by RNAi is sufficient to cause a G(2) phase delay, demonstrating that regulation of SMRTER protein levels by the SIN3/RPD3 complex is a vital component of the transcriptional repression mechanism. Loss of SIN3 does not affect global acetylation of histones H3 and H4, suggesting that the G(2) phase delay is due not to global changes in genome integrity but rather to derepression of SIN3 target genes.
引用
收藏
页码:4965 / 4976
页数:12
相关论文
共 85 条
[1]   Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression [J].
Alland, L ;
Muhle, R ;
Hou, H ;
Potes, J ;
Chin, L ;
SchreiberAgus, N ;
DePinho, RA .
NATURE, 1997, 387 (6628) :49-55
[2]   ONE OF THE PROTEIN PHOSPHATASE-1 ISOENZYMES IN DROSOPHILA IS ESSENTIAL FOR MITOSIS [J].
AXTON, JM ;
DOMBRADI, V ;
COHEN, PTW ;
GLOVER, DM .
CELL, 1990, 63 (01) :33-46
[3]   Histone deacetylases: transcriptional repression with SINers and NuRDs [J].
Ayer, DE .
TRENDS IN CELL BIOLOGY, 1999, 9 (05) :193-198
[4]   ECDYSONE-INDUCED CHANGES IN MORPHOLOGY AND PROTEIN-SYNTHESIS IN DROSOPHILA CELL-CULTURES [J].
BERGER, E ;
RINGLER, R ;
ALAHIOTIS, S ;
FRANK, M .
DEVELOPMENTAL BIOLOGY, 1978, 62 (02) :498-511
[5]   ACETYLATED HISTONE H4 ON THE MALE X-CHROMOSOME IS ASSOCIATED WITH DOSAGE COMPENSATION IN DROSOPHILA [J].
BONE, JR ;
LAVENDER, J ;
RICHMAN, R ;
PALMER, MJ ;
TURNER, BM ;
KURODA, MI .
GENES & DEVELOPMENT, 1994, 8 (01) :96-117
[6]  
Cai RL, 2000, J BIOL CHEM, V275, P27909
[7]   A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development [J].
Chen, GQ ;
Fernandez, J ;
Mische, S ;
Courey, AJ .
GENES & DEVELOPMENT, 1999, 13 (17) :2218-2230
[8]   EFFECTS OF JUVENILE-HORMONE ON THE ECDYSONE RESPONSE OF DROSOPHILA KC CELLS [J].
CHERBAS, L ;
KOEHLER, MMD ;
CHERBAS, P .
DEVELOPMENTAL GENETICS, 1989, 10 (03) :177-188
[9]  
Cherbas L., 1981, ADV CELL CULT, V1, P91
[10]   Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways [J].
Clemens, JC ;
Worby, CA ;
Simonson-Leff, N ;
Muda, M ;
Maehama, T ;
Hemmings, BA ;
Dixon, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6499-6503