Diffusion, peer pressure, and tailed distributions

被引:21
作者
Cecconi, F
Marsili, M
Banavar, JR
Maritan, A
机构
[1] SISSA, I-34014 Trieste, Italy
[2] INFM, SISSA Unit, I-34014 Trieste, Italy
[3] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy
[4] Penn State Univ, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA
基金
美国国家航空航天局;
关键词
D O I
10.1103/PhysRevLett.89.088102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a general, physically motivated nonlinear and nonlocal advection equation in which the diffusion of interacting random walkers competes with a local drift arising from a kind of peer pressure. We show, using a mapping to an integrable dynamical system, that on varying a parameter the steady-state behavior undergoes a transition from the standard diffusive behavior to a localized stationary state characterized by a tailed distribution. Finally, we show that recent empirical laws on economic growth can be explained as a collective phenomenon due to peer pressure interaction.
引用
收藏
页码:088102/1 / 088102/4
页数:4
相关论文
共 20 条
[1]  
Amaral LAN, 1997, J PHYS I, V7, P621
[2]  
Axelrod R., 1997, COMPLEXITY COOPERATI
[3]   Cooperative self-organization of microorganisms [J].
Ben-Jacob, E ;
Cohen, I ;
Levine, H .
ADVANCES IN PHYSICS, 2000, 49 (04) :395-554
[4]  
BOHR T, 1999, DYNAMICAL SYSTEMS AP
[5]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[6]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[7]  
Eberlein E., 1995, BERNOULLI, V1, P281, DOI [DOI 10.2307/3318481, 10.2307/3318481]
[8]  
FRIEDMAN M, 1992, J ECON LIT, V30, P2192
[9]  
Gibrat R., 1931, INEGALITES EC
[10]   Granular solids, liquids, and gases [J].
Jaeger, HM ;
Nagel, SR ;
Behringer, RP .
REVIEWS OF MODERN PHYSICS, 1996, 68 (04) :1259-1273