A stochastic process approach to false discovery control

被引:261
作者
Genovese, C [1 ]
Wasserman, L [1 ]
机构
[1] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
multiple testing; p-values; false discovery rate;
D O I
10.1214/009053604000000283
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper extends the theory of false discovery rates (FDR) pioneered by Benjamini and Hochberg [J. Roy. Statist. Soc. Set. B 57 (1995) 289-300]. We develop a framework in which the False Discovery Proportion (FDP)-the number of false rejections divided by the number of rejections-is treated as a stochastic process. After obtaining the limiting distribution of the process, we demonstrate the validity of a class of procedures I-or controlling the False Discovery Rate (the expected FDP). We construct a confidence envelope for the whole FDP process. From these envelopes we derive confidence thresholds, for controlling the quantiles of the distribution of the FDP as well as controlling the number of false discoveries. We also investigate methods for estimating the p-value distribution.
引用
收藏
页码:1035 / 1061
页数:27
相关论文
共 19 条
[1]  
ABRAMOVICH F, 2000, 200019 STANF U DEP S
[2]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[3]   On the adaptive control of the false discovery fate in multiple testing with independent statistics [J].
Benjamini, Y ;
Hochberg, Y .
JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2000, 25 (01) :60-83
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Empirical Bayes analysis of a microarray experiment [J].
Efron, B ;
Tibshirani, R ;
Storey, JD ;
Tusher, V .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1151-1160
[6]  
Finner H, 2002, ANN STAT, V30, P220
[7]   Operating characteristics and extensions of the false discovery rate procedure [J].
Genovese, C ;
Wasserman, L .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 :499-517
[8]  
HALPERIN M, 1988, BIOMETRIKA, V75, P773
[9]  
HAVRANEK T, 1983, B INT STAT I, V50, P104
[10]   FINITE-SAMPLE CONFIDENCE ENVELOPES FOR SHAPE-RESTRICTED DENSITIES [J].
HENGARTNER, NW ;
STARK, PB .
ANNALS OF STATISTICS, 1995, 23 (02) :525-550