The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing

被引:404
作者
Heinemeyer, W [1 ]
Fischer, M [1 ]
Krimmer, T [1 ]
Stachon, U [1 ]
Wolf, DH [1 ]
机构
[1] UNIV STUTTGART,INST BIOCHEM,D-70569 STUTTGART,GERMANY
关键词
D O I
10.1074/jbc.272.40.25200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The 26 S proteasome is the central protease involved in ubiquitin-mediated protein degradation and fulfills vital regulatory functions in eukaryotes, The proteolytic core of the complex is the 20 S proteasome, a cylindrical particle with two outer rings each made of 7 different alpha-type subunits and two inner rings made of 7 different beta-type subunits, In the archaebacterial 20 S proteasome ancestor proteolytically active sites reside in the 14 uniform beta-subunits. Their N-terminal threonine residues, released by precursor processing, perform the nucleophilic attack for peptide bond hydrolysis. By directed mutational analysis of 20 S proteasomal beta-type proteins of Saccharomyces cerevisiae, we identified three active site-carrying subunits responsible for different peptidolytic activities as follows: Pre3 for post-glutamyl hydrolyzing, Pup1 for trypsin-like, and Pre2 for chymotrypsin-like activity, Double mutants harboring only trypsin-like or chymotrypsin-like activity were viable, Mutation of two potentially active site threonine residues in the Pre4 subunit excluded its catalytic involvement in any of the three peptidase activities, The generation of different, incompletely processed forms of the Pre4 precursor in active site mutants suggested that maturation of non-active proteasomal beta-type subunits is exerted by active subunits and occurs in the fully assembled particle, This trans-acting proteolytic activity might also account for processing intermediates of the active site mutated Pre2 subunit, which was unable to undergo autocatalytic maturation.
引用
收藏
页码:25200 / 25209
页数:10
相关论文
共 59 条
[1]  
ACHSTETTER T, 1984, J BIOL CHEM, V259, P3344
[2]   INTERFERON-GAMMA INDUCES DIFFERENT SUBUNIT ORGANIZATIONS AND FUNCTIONAL DIVERSITY OF PROTEASOMES [J].
AKI, M ;
SHIMBARA, N ;
TAKASHINA, M ;
AKIYAMA, K ;
KAGAWA, S ;
TAMURA, T ;
TANAHASHI, N ;
YOSHIMURA, T ;
TANAKA, K ;
ICHIHARA, A .
JOURNAL OF BIOCHEMISTRY, 1994, 115 (02) :257-269
[3]  
Ausubel FM, 1995, SHORT PROTOCOLS MOL
[4]   INTERFERON-GAMMA STIMULATION MODULATES THE PROTEOLYTIC ACTIVITY AND CLEAVAGE SITE PREFERENCE OF 20S MOUSE PROTEASOMES [J].
BOES, B ;
HENGEL, H ;
RUPPERT, T ;
MULTHAUP, G ;
KOSZINOWSKI, UH ;
KLOETZEL, PM .
JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 179 (03) :901-909
[5]   A PROTEIN CATALYTIC FRAMEWORK WITH AN N-TERMINAL NUCLEOPHILE IS CAPABLE OF SELF-ACTIVATION [J].
BRANNIGAN, JA ;
DODSON, G ;
DUGGLEBY, HJ ;
MOODY, PCE ;
SMITH, JL ;
TOMCHICK, DR ;
MURZIN, AG .
NATURE, 1995, 378 (6555) :416-419
[6]   Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly [J].
Chen, P ;
Hochstrasser, M .
CELL, 1996, 86 (06) :961-972
[7]   BIOGENESIS, STRUCTURE AND FUNCTION OF THE YEAST 20S PROTEASOME [J].
CHEN, P ;
HOCHSTRASSER, M .
EMBO JOURNAL, 1995, 14 (11) :2620-2630
[8]   MULTIFUNCTIONAL YEAST HIGH-COPY-NUMBER SHUTTLE VECTORS [J].
CHRISTIANSON, TW ;
SIKORSKI, RS ;
DANTE, M ;
SHERO, JH ;
HIETER, P .
GENE, 1992, 110 (01) :119-122
[9]   Structure and functions of the 20S and 26S proteasomes [J].
Coux, O ;
Tanaka, K ;
Goldberg, AL .
ANNUAL REVIEW OF BIOCHEMISTRY, 1996, 65 :801-847
[10]   THE MULTICATALYTIC PROTEINASE (PROSOME) IS UBIQUITOUS FROM EUKARYOTES TO ARCHAEBACTERIA [J].
DAHLMANN, B ;
KOPP, F ;
KUEHN, L ;
NIEDEL, B ;
PFEIFER, G ;
HEGERL, R ;
BAUMEISTER, W .
FEBS LETTERS, 1989, 251 (1-2) :125-131