A study of the characteristics of white noise using the empirical mode decomposition method

被引:1621
作者
Wu, ZH
Huang, NE
机构
[1] Ctr Ocean Land Atmosphere Studies, Beltsville, MD 20705 USA
[2] NASA, Goddard Space Flight Ctr, Lab Hydrospher Proc, Oceans & Ice Branch, Greenbelt, MD 20771 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2004年 / 460卷 / 2046期
关键词
empirical mode decomposition; intrinsic mode function; characteristics of white noise; energy-density function; energy-density spread function; statistical significance test;
D O I
10.1098/rspa.2003.1221
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Based on numerical experiments on white noise using the empirical mode decomposition (EMD) method, we find empirically that the EMD is effectively a dyadic filter., the intrinsic mode function (IMF) components are all normally distributed, and the Fourier spectra of the IMF components are all identical and cover the same area, on a semi-logarithmic period scale. Expanding from these empirical findings, we further deduce that the product of the energy density of IMF and its corresponding averaged period is a constant, and that the energy-density function is chi-squared distributed. Furthermore, we derive the energy-density spread function of the IMF components. Through these results, we establish a, method of assigning statistical significance of information content for IMF components from any noisy data. Southern Oscillation Index data, are used to illustrate the methodology developed here.
引用
收藏
页码:1597 / 1611
页数:15
相关论文
共 9 条
  • [1] Empirical mode decomposition as a filter bank
    Flandrin, P
    Rilling, G
    Gonçalvés, P
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (02) : 112 - 114
  • [2] Advanced spectral methods for climatic time series
    Ghil, M
    Allen, MR
    Dettinger, MD
    Ide, K
    Kondrashov, D
    Mann, ME
    Robertson, AW
    Saunders, A
    Tian, Y
    Varadi, F
    Yiou, P
    [J]. REVIEWS OF GEOPHYSICS, 2002, 40 (01) : 3 - 1
  • [3] A new view of nonlinear water waves: The Hilbert spectrum
    Huang, NE
    Shen, Z
    Long, SR
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1999, 31 : 417 - 457
  • [4] The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    Huang, NE
    Shen, Z
    Long, SR
    Wu, MLC
    Shih, HH
    Zheng, QN
    Yen, NC
    Tung, CC
    Liu, HH
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971): : 903 - 995
  • [5] PAPOULIS A, 1986, PROBABILITY RANDOM V
  • [6] Teukolsky SA, 1992, NUMERICAL RECIPES C, VSecond
  • [7] TRENBERTH KE, 1984, MON WEATHER REV, V112, P326, DOI 10.1175/1520-0493(1984)112<0326:SVNITS>2.0.CO
  • [8] 2
  • [9] WU Z, 2001, 110 CENT OC LAND ATM