An automatic Portmanteau test for serial correlation

被引:174
作者
Escanciano, J. Carlos [2 ]
Lobato, Ignacio N. [1 ]
机构
[1] Inst Tecnol Autonomo Mexico, Ctr Invest Econ, Mexico City 10700, DF, Mexico
[2] Indiana Univ, Bloomington, IN 47405 USA
关键词
Autocorrelation; Consistency; Power; Akaike's AIC; Schwarz's BIC; GOODNESS-OF-FIT; DATA-DRIVEN VERSION; TIME-SERIES; ASYMPTOTIC POWER; CRAMER-VONMISES; SMOOTH TEST; MODEL; AUTOCORRELATION; REGRESSION; SELECTION;
D O I
10.1016/j.jeconom.2009.03.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article introduces a data-driven Box-Pierce test for serial correlation. The proposed test is very attractive compared to the existing ones. In particular, implementation of this test is extremely simple for two reasons: first, the researcher does not need to specify the order of the autocorrelation tested, since the test automatically chooses this number; second, its asymptotic null distribution is chi-square with one degree of freedom, so there is no need of using a bootstrap procedure to estimate the critical values. In addition, the test is robust to the presence of conditional heteroskedasticity of unknown form. Finally, the proposed test presents higher power in simulations than the existing ones for models commonly employed in empirical finance. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 149
页数:10
相关论文
共 64 条
[1]  
Aerts M, 1999, J AM STAT ASSOC, V94, P869
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]  
Bartlett M.S., 1955, INTRO STOCHASTIC PRO
[4]  
Bera A.K., 1993, J EC SURVEYS, V7, P305, DOI DOI 10.1111/J.1467-6419.1993.TB00170.X
[5]  
Bera A.K., 2001, HDB APPL ECONOMETRIC, P170
[6]  
BHANSALI RJ, 1977, BIOMETRIKA, V64, P547, DOI 10.1093/biomet/64.3.547
[7]   A DERIVATION OF THE INFORMATION CRITERIA FOR SELECTING AUTOREGRESSIVE MODELS [J].
BHANSALI, RJ .
ADVANCES IN APPLIED PROBABILITY, 1986, 18 (02) :360-387
[8]  
Billingsley P., 1961, Proceedings of the American Mathematical Society, V12, P788
[9]   EXPONENTIAL MODEL FOR SPECTRUM OF A SCALAR TIME SERIES [J].
BLOOMFIELD, P .
BIOMETRIKA, 1973, 60 (02) :217-226
[10]  
Bollerslev T., 1992, Econometric Rev., V11, P143, DOI [DOI 10.1080/07474939208800229, 10.1080/07474939208800229]