Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system

被引:232
作者
Niu, Simiao [1 ]
Zhou, Yu Sheng [1 ]
Wang, Sihong [1 ]
Liu, Ying [1 ]
Lin, Long [1 ]
Bando, Yoshio [2 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Natl Inst Mat Sci, MANA, Int Ctr Mat Nanoarchitecton, Satellite Res Facil, Tsukuba, Ibaraki 3050044, Japan
关键词
Mechanical energy harvesting; Triboelectric nanogenerators; Equivalent circuits; Simulation method; Integrated systems; CONTACT ELECTRIFICATION; ELECTROMAGNETIC GENERATOR; MOTION; CHARGE; POWER; OPTIMIZATION; SEPARATION; SURFACE;
D O I
10.1016/j.nanoen.2014.05.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Demonstrating integrated triboelectric nanogenerator energy harvesting systems that contain triboelectric nanogenerators, power management circuits, signal processing circuits, energy storage elements, and/or load circuits are core steps for practical applications of triboelectric nanogenerators. Through the design flow of such systems, theoretical simulation plays a critical role. In this manuscript, we provided a new theoretical simulation method for integrated triboelectric nanogenerator systems through integrating the equivalent circuit model of triboelectric nanogenerators into SPICE software. This new simulation method was validated by comparing its results with analytical solutions in some specific triboelectric nanogenerator systems. Finally, we employed this new simulator to analyze the performance of an integrated triboelectric nanogenerator system with a power management circuit. From the study of the influence of different circuit parameters, we outline the design strategy for such kind of triboelectric nanogenerator systems. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:150 / 156
页数:7
相关论文
共 21 条
[1]   The Mosaic of Surface Charge in Contact Electrification [J].
Baytekin, H. T. ;
Patashinski, A. Z. ;
Branicki, M. ;
Baytekin, B. ;
Soh, S. ;
Grzybowski, B. A. .
SCIENCE, 2011, 333 (6040) :308-312
[2]   A micro electromagnetic generator for vibration energy harvesting [J].
Beeby, S. P. ;
Torah, R. N. ;
Tudor, M. J. ;
Glynne-Jones, P. ;
O'Donnell, T. ;
Saha, C. R. ;
Roy, S. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (07) :1257-1265
[3]   A multi-frequency sandwich type electromagnetic vibration energy harvester [J].
Chen, Jingdong ;
Chen, Di ;
Yuan, Tao ;
Chen, Xiang .
APPLIED PHYSICS LETTERS, 2012, 100 (21)
[4]   LARGE-SIGNAL BEHAVIOR OF JUNCTION TRANSISTORS [J].
EBERS, JJ ;
MOLL, JL .
PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1954, 42 (12) :1761-1772
[5]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[6]   CONTACT ELECTRIFICATION INDUCED BY MONOLAYER MODIFICATION OF A SURFACE AND RELATION TO ACID-BASE INTERACTIONS [J].
HORN, RG ;
SMITH, DT ;
GRABBE, A .
NATURE, 1993, 366 (6454) :442-443
[7]   Transparent Flexible Graphene Triboelectric Nanogenerators [J].
Kim, Seongsu ;
Gupta, Manoj Kumar ;
Lee, Keun Young ;
Sohn, Ahrum ;
Kim, Tae Yun ;
Shin, Kyung-Sik ;
Kim, Dohwan ;
Kim, Sung Kyun ;
Lee, Kang Hyuck ;
Shin, Hyeon-Jin ;
Kim, Dong-Wook ;
Kim, Sang-Woo .
ADVANCED MATERIALS, 2014, 26 (23) :3918-3925
[8]   Pervasive power: A radioisotope-powered piezoelectric generator [J].
Lal, A ;
Duggirala, R ;
Li, H .
IEEE PERVASIVE COMPUTING, 2005, 4 (01) :53-61
[9]   Piezoelectric energy harvesting device optimization by synchronous electric charge extraction [J].
Lefeuvre, E ;
Badel, A ;
Richard, C ;
Guyomar, D .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2005, 16 (10) :865-876
[10]   Segmentally Structured Disk Triboelectric Nanogenerator for Harvesting Rotational Mechanical Energy [J].
Lin, Long ;
Wang, Sihong ;
Xie, Yannan ;
Jing, Qingshen ;
Niu, Simiao ;
Hu, Youfan ;
Wang, Zhong Lin .
NANO LETTERS, 2013, 13 (06) :2916-2923