Diel patterns of UVBR-induced DNA damage in picoplankton size fractions from the Gulf of Aqaba, Red Sea

被引:41
作者
Boelen, P
Post, AF
Veldhuis, MJW
Buma, AGJ
机构
[1] Univ Groningen, Dept Marine Biol, Ctr Ecol & Evolutionary Studies, NL-9750 AA Haren, Netherlands
[2] Interuniv Inst Marine Sci, H Steinitz Marine Biol Lab, IL-88103 Elat, Israel
[3] Netherlands Inst Sea Res, Dept Biol Oceanog, NL-1790 AB Den Burg, Netherlands
关键词
D O I
10.1007/s00248-002-1002-7
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
This study focuses on the impact of natural levels of UVBR (ultraviolet-B radiation: 280 to 315 nm) on bacterio- and phytoplankton (<10 μm) from the Gulf of Aqaba, Red Sea. Incident biologically effective doses (BEDs) and attenuation of biologically effective radiation in the water column were measured using a DNA biodosimeter. UVBR-induced DNA damage was measured as cyclobutane pyrimidine dimers (CPDs), using an antibody directed to CPDs followed by chemiluminescent detection. Depth profiles of DNA damage were determined in two plankton size fractions (0.2 to 0.8 μm and 0.8 to 10 μm) collected down to 50 m depth. Furthermore) accumulation and removal of CPDs were monitored in surface plankton samples during several daily cycles. Small plankton (plankton < 10 mum) composition was determined by flow cytometry. The plankton community in the Gulf of Aqaba was dominated by nonphototrophic bacteria and the free-living prochlorophyte Prochlorococcus spp. (<0.8 μm). In general, no DNA damage could be detected in dosimeter DNA below 15 m. In contrast, DNA damage (up to 124 CPD Mnucl(-1)) could be detected in all bacterio- and phytoplankton samples. DNA damage accumulated throughout the day, indicating that plankton in the Gulf of Aqaba undergo UVBR stress via CPD induction. Although the numbers of CPDs decreased during darkness, both size fractions showed some residual DNA damage at the end of the night. This suggests that dark repair processes did not remove all CPDs, or that part of the plankton community was incapable of repair at all. CPD levels in the two size fractions showed no significant differences in situ. During full solar radiation exposures (samples incubated in bags), more CPDs were detected in the smaller (0.2 to 0.8 μm) size fraction as compared to the larger (0.8 to 10 μm) size fraction. In these experiments, initial plankton composition was significantly different from the field samples. This implies that a shift in the population structure or irradiance conditions can lead to a significant change in UVBR sensitivity. In conclusion, the results show that the picoplankton-dominated phyto- and bacterioplankton communities in the clear surface waters from the Gulf of Aqaba undergo UVBR stress. Repair pathways are not sufficient to eliminate damage during or after UVBR exposure hours, suggesting photomortality as a potential loss parameter of the plankton community.
引用
收藏
页码:164 / 174
页数:11
相关论文
共 54 条
[1]   ULTRAVIOLET-B RADIATION EFFECTS ON INORGANIC NITROGEN UPTAKE BY NATURAL ASSEMBLAGES OF OCEANIC PLANKTON [J].
BEHRENFELD, MJ ;
LEAN, DRS ;
LEE, H .
JOURNAL OF PHYCOLOGY, 1995, 31 (01) :25-36
[2]   CHRONIC EFFECTS OF ULTRAVIOLET-B RADIATION ON GROWTH AND CELL-VOLUME OF PHAEODACTYLUM-TRICORNUTUM (BACILLARIOPHYCEAE) [J].
BEHRENFELD, MJ ;
HARDY, JT ;
LEE, H .
JOURNAL OF PHYCOLOGY, 1992, 28 (06) :757-760
[3]   Accumulation and removal of UVBR-induced DNA damage in marine tropical plankton subjected to mixed and simulated non-mixed conditions [J].
Boelen, P ;
Veldhuis, MJW ;
Buma, AGJ .
AQUATIC MICROBIAL ECOLOGY, 2001, 24 (03) :265-274
[4]   UVBR-induced DNA damage in natural marine picoplankton assemblages in the tropical Atlantic Ocean [J].
Boelen, P ;
de Boer, MK ;
Kraay, GW ;
Veldhuis, MJW ;
Buma, AGJ .
MARINE ECOLOGY PROGRESS SERIES, 2000, 193 :1-9
[5]   The sensitivity of Emiliania huxleyi (Prymnesiophycea) to ultraviolet-B radiation [J].
Buma, AGJ ;
van Oijen, T ;
van de Poll, W ;
Veldhuis, MJW ;
Gieskes, WWC .
JOURNAL OF PHYCOLOGY, 2000, 36 (02) :296-303
[6]   Patterns of DNA damage and photoinhibition in temperate South-Atlantic picophytoplankton exposed to solar ultraviolet radiation [J].
Buma, AGJ ;
Helbling, EW ;
de Boer, MK ;
Villafañe, VE .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2001, 62 (1-2) :9-18
[7]   Depth distributions of DNA damage in Antarctic marine phyto- and bacterioplankton exposed to summertime UV radiation [J].
Buma, AGJ ;
de Boer, MK ;
Boelen, P .
JOURNAL OF PHYCOLOGY, 2001, 37 (02) :200-208
[8]   MONITORING ULTRAVIOLET-B-INDUCED DNA-DAMAGE IN INDIVIDUAL DIATOM CELLS BY IMMUNOFLUORESCENT THYMINE DIMER DETECTION [J].
BUMA, AGJ ;
VANHANNEN, EJ ;
ROZA, L ;
VELDHUIS, MJW ;
GIESKES, WWC .
JOURNAL OF PHYCOLOGY, 1995, 31 (02) :314-321
[9]   BIOCHEMICAL-COMPOSITION AND SHORT-TERM NUTRIENT INCORPORATION PATTERNS IN A UNICELLULAR MARINE CYANOBACTERIUM, SYNECHOCOCCUS (WH7803) [J].
CUHEL, RL ;
WATERBURY, JB .
LIMNOLOGY AND OCEANOGRAPHY, 1984, 29 (02) :370-374
[10]   INHIBITION OF PHOTOSYNTHESIS BY ULTRAVIOLET-RADIATION AS A FUNCTION OF DOSE AND DOSAGE RATE - RESULTS FOR A MARINE DIATOM [J].
CULLEN, JJ ;
LESSER, MP .
MARINE BIOLOGY, 1991, 111 (02) :183-190