Inhibition of Escherichia coli growth by acetic acid:: a problem with methionine biosynthesis and homocysteine toxicity

被引:264
作者
Roe, AJ [1 ]
O'Byrne, C [1 ]
McLaggan, D [1 ]
Booth, IR [1 ]
机构
[1] Univ Aberdeen, Inst Med Sci, Dept Mol & Cell Biol, Aberdeen AB25 2ZD, Scotland
来源
MICROBIOLOGY-SGM | 2002年 / 148卷
关键词
enteric bacteria; amino acid synthesis; acetate; weak acids; metabolite toxicity;
D O I
10.1099/00221287-148-7-2215
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The mechanism by which methionine relieves the growth inhibition of Escherichia coli K-12 that is caused by organic weak acid food preservatives was investigated. In the presence of 8 mM acetate the specific growth rate of E. coli Frag1 (in MaclIvaine's minimal medium pH 6.0) is reduced by 50%. Addition of methionine restores growth to 80% of that observed in untreated controls. Similar relief was seen with cultures treated with either benzoate or propionate. Mutants with an elevated intracellular methionine pool were almost completely resistant to the inhibitory effects of acetate, suggesting that the methionine pool becomes limiting for growth in acetate-treated cells. Measurement of the intracellular concentrations of pathway intermediates revealed that the homocysteine pool is increased dramatically in acetate-treated cells, suggesting that acetate inhibits a biosynthetic step downstream from this intermediate. Supplementation of the medium with homocysteine inhibits the growth of E. coli cells. Acetate inhibition of growth arises from the depletion of the intracellular methionine pool with the concomitant accumulation of the toxic intermediate homocysteine and this augments the effect of lowering cytoplasmic pH.
引用
收藏
页码:2215 / 2222
页数:8
相关论文
共 36 条
[1]   TIGHTLY REGULATED TAC PROMOTER VECTORS USEFUL FOR THE EXPRESSION OF UNFUSED AND FUSED PROTEINS IN ESCHERICHIA-COLI [J].
AMANN, E ;
OCHS, B ;
ABEL, KJ .
GENE, 1988, 69 (02) :301-315
[2]  
AMEZAGA MR, 1995, MICROBIOL-UK, V141, P41
[3]   Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response [J].
Arnold, CN ;
McElhanon, J ;
Lee, A ;
Leonhart, R ;
Siegele, DA .
JOURNAL OF BACTERIOLOGY, 2001, 183 (07) :2178-2186
[4]   THE EFFECTS OF WEAK ACIDS ON POTASSIUM UPTAKE BY ESCHERICHIA-COLI K-12 - INHIBITION BY LOW CYTOPLASMIC PH [J].
BAKKER, EP ;
MANGERICH, WE .
BIOCHIMICA ET BIOPHYSICA ACTA, 1983, 730 (02) :379-386
[5]   Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis [J].
Blankenhorn, D ;
Phillips, J ;
Slonczewski, JL .
JOURNAL OF BACTERIOLOGY, 1999, 181 (07) :2209-2216
[6]   REGULATION OF CYTOPLASMIC PH IN BACTERIA [J].
BOOTH, IR .
MICROBIOLOGICAL REVIEWS, 1985, 49 (04) :359-378
[7]   Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae:: is growth inhibition dependent on reduced intracellular pH? [J].
Bracey, D ;
Holyoak, CD ;
Coote, PJ .
JOURNAL OF APPLIED MICROBIOLOGY, 1998, 85 (06) :1056-1066
[8]   Preservative agents in foods - Mode of action and microbial resistance mechanisms [J].
Brul, S ;
Coote, P .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 1999, 50 (1-2) :1-17
[9]   Control of acid resistance in Escherichia coli [J].
Castanie-Cornet, MP ;
Penfound, TA ;
Smith, D ;
Elliott, JF ;
Foster, JW .
JOURNAL OF BACTERIOLOGY, 1999, 181 (11) :3525-3535
[10]   ORGANIC-ACIDS - CHEMISTRY, ANTIBACTERIAL ACTIVITY AND PRACTICAL APPLICATIONS [J].
CHERRINGTON, CA ;
HINTON, M ;
MEAD, GC ;
CHOPRA, I .
ADVANCES IN MICROBIAL PHYSIOLOGY, 1991, 32 :87-108