Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality

被引:808
作者
Brovelli, A
Ding, MZ
Ledberg, A
Chen, YH
Nakamura, R
Bressler, SL
机构
[1] Florida Atlantic Univ, Ctr Complex Syst & Brain Sci, Boca Raton, FL 33431 USA
[2] Lab Neuropsychol, NIH, Bethesda, MD 20892 USA
关键词
cerebral cortex; motor maintenance; parietal; local field potential; coherence;
D O I
10.1073/pnas.0308538101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Previous studies have shown that synchronized beta frequency (14-30 Hz) oscillations in the primary motor cortex are involved in maintaining steady contractions of contralateral arm and hand muscles. However, little is known about the role of postcentral cortical areas in motor maintenance and their patterns of interaction with motor cortex. We investigated the functional relations of beta-synchronized neuronal assemblies in pre- and postcentral areas of two monkeys as they pressed a hand lever during the wait period of a visual discrimination task. By using power and coherence spectral analysis, we identified a beta-synchronized large-scale network linking pre- and postcentral areas. We then used Granger causality spectra to measure directional influences among recording sites. In both monkeys, strong Granger causal influences were observed from primary somatosensory cortex to both motor cortex and inferior posterior parietal cortex, with the latter area also exerting Granger causal influences on motor cortex. Granger causal influences from motor cortex to postcentral sites, however, were weak in one monkey and not observed in the other. These results are the first, to our knowledge, to demonstrate in awake monkeys that synchronized beta oscillations bind multiple sensorimotor areas into a large-scale network during motor maintenance behavior and carry Granger causal influences from primary somatosensory and inferior posterior parietal cortices to motor cortex.
引用
收藏
页码:9849 / 9854
页数:6
相关论文
共 47 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
ASANUMA H, 1989, MOTOR CONVEX
[3]   Partial directed coherence:: a new concept in neural structure determination [J].
Baccalá, LA ;
Sameshima, K .
BIOLOGICAL CYBERNETICS, 2001, 84 (06) :463-474
[4]   Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation [J].
Baker, SN ;
Olivier, E ;
Lemon, RN .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 501 (01) :225-241
[5]   The role of synchrony and oscillations in the motor output [J].
Baker, SN ;
Kilner, JM ;
Pinches, EM ;
Lemon, RN .
EXPERIMENTAL BRAIN RESEARCH, 1999, 128 (1-2) :109-117
[6]   On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings [J].
Bernasconi, C ;
König, P .
BIOLOGICAL CYBERNETICS, 1999, 81 (03) :199-210
[7]   Bi-directional interactions between visual areas in the awake behaving cat [J].
Bernasconi, C ;
von Stein, A ;
Chiang, C ;
König, P .
NEUROREPORT, 2000, 11 (04) :689-692
[8]   Long-range synchronization of γ and β oscillations and the plasticity of excitatory and inhibitory synapses:: A network model [J].
Bibbig, A ;
Traub, RD ;
Whittington, MA .
JOURNAL OF NEUROPHYSIOLOGY, 2002, 88 (04) :1634-1654
[9]   LARGE-SCALE CORTICAL NETWORKS AND COGNITION [J].
BRESSLER, SL .
BRAIN RESEARCH REVIEWS, 1995, 20 (03) :288-304
[10]   EPISODIC MULTIREGIONAL CORTICAL COHERENCE AT MULTIPLE FREQUENCIES DURING VISUAL TASK-PERFORMANCE [J].
BRESSLER, SL ;
COPPOLA, R ;
NAKAMURA, R .
NATURE, 1993, 366 (6451) :153-156