BMP-7 and excess glutamate:: Opposing effects on dendrite growth from cerebral cortical neurons in vitro

被引:30
作者
Esquenazi, S [1 ]
Monnerie, H
Kaplan, P
Le Roux, P
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
[2] Curis Inc, Cambridge, MA USA
[3] NYU, Dept Neurosurg, New York, NY USA
关键词
axon; cerebral cortex; dendrite; glutamate; neuron; BMP-7;
D O I
10.1006/exnr.2002.7906
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Glutamate is an important regulator of dendrite development. During cerebral ischemia, however, there is massive release of glutamate reaching millimolar concentrations in the extracellular space. An early consequence of this excess glutamate is reduced dendrite growth. Bone morphogenetic protein-7 (BMP-7) a member of the transforming growth factor-beta (TGF-beta) superfamily has been demonstrated to enhance dendrite output from cerebral cortical and hippocampal neurons in vitro. However, it is not known whether BMP-7can prevent the reduced dendrite growth associated with excess glutamate or enhance dendrite growth after glutamate exposure. Therefore we quantified axon and primary, secondary, and total dendrite growth from embryonic mouse cortical neurons (E18) grown at low density in vitro in a chemically defined medium and exposed to glutamate (1 or 2 mM) for 48 h. Morphology and double immunolabeling (MAP2, NF-H) were used to identify cortical dendrites and axons after 3 DIV. In these short-term cultures, glutamate did not influence neuron survival. The addition of glutamate to cortical neurons, however, significantly attenuated dendrite output. This effect was mimicked by the addition of NMDA but not AMPA agonists and inhibited by the specific NMDA receptor antagonist MK-801. The reduction in dendrite growth mediated by excess glutamate was ameliorated by the administration of 30 or 100 ng/ml of BMP-7. In addition, when administered in a delayed fashion between 1 and 24 h after the initial glutamate exposure, BMP-7 was able to enhance dendrite growth, including primary dendrite number, primary dendrite length, and secondary dendritic branching. These findings demonstrate that BMP-7 can ameliorate reduced dendrite growth from cerebral cortical neurons associated with excess glutamate in vitro and are important because they may help explain why BMP-7 administration is associated with enhanced functional recovery in models of cerebral ischemia. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:41 / 54
页数:14
相关论文
共 78 条
[1]   Glutamate slows axonal transport of neurofilaments in transfected neurons [J].
Ackerley, S ;
Grierson, AJ ;
Brownlees, J ;
Thornhill, P ;
Anderton, BH ;
Leigh, PN ;
Shaw, CE ;
Miller, CCJ .
JOURNAL OF CELL BIOLOGY, 2000, 150 (01) :165-175
[2]   ACTIVITY-DEPENDENT REGULATION OF DENDRITIC SPINE DENSITY ON CORTICAL PYRAMIDAL NEURONS IN ORGANOTYPIC SLICE CULTURES [J].
ANNIS, CM ;
ODOWD, DK ;
ROBERTSON, RT .
JOURNAL OF NEUROBIOLOGY, 1994, 25 (12) :1483-1493
[3]  
[Anonymous], 1986, SYNAPSES CIRCUITS BE
[4]   CHARACTERIZATION OF BASIC FIBROBLAST GROWTH FACTOR-MEDIATED ACCELERATION OF AXONAL BRANCHING IN CULTURED RAT HIPPOCAMPAL-NEURONS [J].
AOYAGI, A ;
NISHIKAWA, K ;
SAITO, H ;
ABE, K .
BRAIN RESEARCH, 1994, 661 (1-2) :117-126
[5]   Brain uptake of glutamate: Food for thought [J].
Attwell, D .
JOURNAL OF NUTRITION, 2000, 130 (04) :1023S-1025S
[6]  
BARTLETT WP, 1984, J NEUROSCI, V4, P1944
[7]  
Bengtsson H, 1998, J NEUROSCI RES, V53, P559, DOI 10.1002/(SICI)1097-4547(19980901)53:5<559::AID-JNR6>3.0.CO
[8]  
2-8
[9]   ELEVATION OF THE EXTRACELLULAR CONCENTRATIONS OF GLUTAMATE AND ASPARTATE IN RAT HIPPOCAMPUS DURING TRANSIENT CEREBRAL-ISCHEMIA MONITORED BY INTRACEREBRAL MICRODIALYSIS [J].
BENVENISTE, H ;
DREJER, J ;
SCHOUSBOE, A ;
DIEMER, NH .
JOURNAL OF NEUROCHEMISTRY, 1984, 43 (05) :1369-1374
[10]   OPTIMIZED SURVIVAL OF HIPPOCAMPAL-NEURONS IN B27-SUPPLEMENTED NEUROBASAL(TM), A NEW SERUM-FREE MEDIUM COMBINATION [J].
BREWER, GJ ;
TORRICELLI, JR ;
EVEGE, EK ;
PRICE, PJ .
JOURNAL OF NEUROSCIENCE RESEARCH, 1993, 35 (05) :567-576