Numerical methods for one-dimensional Stefan problems

被引:84
作者
Caldwell, J [1 ]
Kwan, YY [1 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
来源
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING | 2004年 / 20卷 / 07期
关键词
moving boundary problem; Stefan problern;
D O I
10.1002/cnm.691
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper describes and compares several effective methods for the numerical solution of one-dimensional Stefan problems. It is not intended to be an exhaustive review but is restricted to a range of problems and geometries including melting in the half-plane, outward cylindrical solidification and outward spherical solidification. From the limited comparison of numerical results obtained, some helpful comments can be made which may prove valuable in the future use of these methods. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:535 / 545
页数:11
相关论文
共 17 条
[1]  
Caldwell J, 2000, COMMUN NUMER METH EN, V16, P585, DOI 10.1002/1099-0887(200008)16:8<585::AID-CNM363>3.0.CO
[2]  
2-7
[3]  
Caldwell J, 2000, COMMUN NUMER METH EN, V16, P569, DOI 10.1002/1099-0887(200008)16:8<569::AID-CNM361>3.0.CO
[4]  
2-3
[5]   On the perturbation method for the Stefan problem with time-dependent boundary conditions [J].
Caldwell, J ;
Kwan, YY .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2003, 46 (08) :1497-1501
[6]   Nodal integral and finite difference solution of one-dimensional Stefan problem [J].
Caldwell, J ;
Savovic, S ;
Kwan, YY .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2003, 125 (03) :523-527
[7]  
Caldwell J, 2002, COMPUTAT STUDIES, V4, P165
[8]  
Caldwell J, 2000, COMPUTAT STUDIES, V3, P215
[9]  
Caldwell J, 2002, J MATH SCI, V13, P99
[10]  
CALDWELL J, 2002, J MATH SCI, V13, P67