Progress in the 10-MW ECRH system for the stellarator W7-X

被引:9
作者
Dammertz, G [1 ]
Braune, H
Erckmann, V
Gantenbein, G
Kasparek, W
Laqua, HP
Leonhardt, W
Michel, G
Muller, G
Neffe, G
Piosczyk, B
Schmid, M
Thumm, MK
机构
[1] Forschungszentrum Karlsruhe, Assoc EURATOM FZK, Inst Hochleistungsimplus & Mikrowellentech, D-76021 Karlsruhe, Germany
[2] Max Planck Inst Plasma Phys, Teilinst Greifswald, Accoc EURATOM, D-17491 Greifswald, Germany
[3] Univ Karlsruhe, Inst Hochstfrequenztech & Elekt, D-76128 Karlsruhe, Germany
[4] Univ Stuttgart, Inst Plasmaforsch, D-70569 Stuttgart, Germany
关键词
diamond window; gyrotron; high-power microwaves; stellarator; transmission line; W7-X;
D O I
10.1109/TPS.2004.823972
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
During the last few years, electron-cyclotron resonance heating (ECRH) and electron-cyclotron current drive (ECCD) has proven to be one of the most attractive heating schemes for stellarators, as it provides net current free plasma start up and heating. Extensive measurements on stellarators at Garching provide a solid physical and technological basis for the ECRH system on the new stellarator facility W7-X, which is now under construction at the Max Planck Institute of Plasma Physics, Greifswald, Germany. The ECRH system will be built up from ten gyrotrons each with a power of 1 MW at a frequency of 140 GHz operating under almost stationary conditions (30 min.). The scientific goals of the superconducting stellarator and the demands for the ECRH system including the gyrotron development and the transmission lines are discussed.
引用
收藏
页码:144 / 151
页数:8
相关论文
共 20 条
  • [1] Recent results of the 1-MW, 140-GHz, TE22,6-mode gyrotron
    Dammertz, G
    Braz, O
    Chopra, AK
    Koppenburg, K
    Kuntze, M
    Piosczyk, B
    Thumm, M
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 1999, 27 (02) : 330 - 339
  • [2] Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator
    Dammertz, G
    Alberti, S
    Arnold, A
    Borie, E
    Erckmann, V
    Gantenbein, G
    Giguet, E
    Heidinger, R
    Hogge, JP
    Illy, S
    Kasparek, W
    Koppenburg, K
    Kuntze, M
    Laqua, HR
    LeCloarec, G
    LeGoff, YC
    Leonhardt, W
    Lievin, C
    Magne, R
    Michel, G
    Müller, G
    Neffe, G
    Piosczyk, B
    Schmid, M
    Schwörer, K
    Thumm, MK
    Tran, MQ
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (03) : 808 - 818
  • [3] Long-pulse operation of a 0.5 MW TE(10.4) gyrotron at 140 GHz
    Dammertz, G
    Braz, O
    Iatrou, CT
    Kuntze, M
    Mobius, A
    Piosczyk, B
    Thumm, M
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 1996, 24 (03) : 570 - 578
  • [4] Empacher L., 1997, Fusion Technology 1996. Proceedings of the 19th Symposium on Fusion Technology, P541
  • [5] Analysis of a multiple-beam waveguide for free-space transmission of microwaves
    Empacher, L
    Kasparek, W
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2001, 49 (03) : 483 - 493
  • [7] ERCKMANN V, 1994, P 17 IEEE NPSS S FUS, P40
  • [8] Long-pulse and CW tests of a 110-GHz gyrotron with an internal, quasi-optical converter
    Felch, K
    Blank, M
    Borchard, P
    Chu, TS
    Feinstein, J
    Jory, HR
    Lorbeck, JA
    Loring, CM
    Mizuhara, YM
    Neilson, JM
    Schumacher, R
    Temkin, RJ
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 1996, 24 (03) : 558 - 569
  • [9] GANTENBEIN G, 1998, P 20 S FUS TECHN 199, V1, P423
  • [10] Goldsmith P.F., 1998, Quasioptical systems: Gaussian Beams Quasioptical Propagaiton and Applications, DOI DOI 10.1109/9780470546291