Difference equations with delay

被引:7
作者
Diekmann, O
van Gils, SA
机构
[1] Univ Utrecht, Vakgroep Wiskunde, NL-3508 TA Utrecht, Netherlands
[2] Univ Twente, Fac Appl Math, NL-7500 AE Enschede, Netherlands
关键词
delayed difference equation; periodic patterns; necklaces;
D O I
10.1007/BF03167337
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we employ combinatorial arguments to count and classify certain periodic solutions of the delayed difference equation x(n) = f(x(n - k)), with k greater than or equal to 2 given and n is an element of Z. The periodic solutions that we consider are formed by combining k copies of an m-periodic solution of the "ordinary" difference equation x(n) = f(x(n - 1)). We also briefly discuss the possibility of braiding different periodic solutions of the ordinary difference equation into a periodic solution of the delayed version.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 7 条
[1]  
Berlekamp E. R., 1968, ALGEBRAIC CODING THE
[2]  
Diekmann O, 1999, EVOL ECOL RES, V1, P261
[3]   AN ALGORITHM FOR GENERATING NECKLACES OF BEADS IN 2 COLORS [J].
FREDRICKSEN, H ;
KESSLER, IJ .
DISCRETE MATHEMATICS, 1986, 61 (2-3) :181-188
[4]  
GOLOMB SW, 1967, COMBINATORIAL MATH I, pCH21
[5]  
LEMMENS PWH, 1992, HOOFDSTUKKEN UIT COM
[6]   NECKLACES, SYMMETRIES AND SELF-RECIPROCAL POLYNOMIALS [J].
MILLER, RL .
DISCRETE MATHEMATICS, 1978, 22 (01) :25-33
[7]  
van Lint J., 1992, A Course in Combinatorics