Process Map for the Hydrothermal Synthesis of α-Fe2O3 Nanorods

被引:107
作者
Almeida, Trevor P. [1 ]
Fay, Mike
Zhu, Yanqiu [1 ]
Brown, Paul D. [1 ]
机构
[1] Univ Nottingham, Fac Engn, Div Mat Mech & Struct, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
FERRIC HYDROXIDE GEL; MAGNETIC-PROPERTIES; FORMATION MECHANISM; HEMATITE NANOPARTICLES; BETA-FEOOH; PARTICLES; SHAPE; NANOCRYSTALS; SIZE; AKAGANEITE;
D O I
10.1021/jp907081j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A "process map" for the hydrothermal synthesis (HS) of single crystalline alpha-Fe2O3 nanorods from aqueous FeCl3 is presented, as a function of temperature, time, and phosphate concentration, as assessed using the combined techniques of X-ray diffractometry, transmission electron microscopy, selected area electron diffraction, Fourier transform infrared spectrometry, and X-ray photoelectron spectroscopy. The process map provides insight into the nature of intermediate beta-FeOOH nanorod precipitation, dissolution and subsequent alpha-Fe2O3 growth, along with the effect of PO43- anion concentration on the alpha-Fe2O3 particle shape. Increasing the processing temperature in the absence of 4 surfactant promoted the dissolution of initially formed beta-FeOOH nanorods and the nucleation and growth of equiaxed alpha-Fe2O3 nanoparticles with rhombohedral morphology. Increasing additions of phosphate surfactant resulted in a shape change of the alpha-Fe2O3 nanoparticles into lenticular alpha-Fe2O3 nanorods with increasing aspect ratio but with progressive inhibition of alpha-Fe2O3 phase formation. Increasing the synthesis temperature in the presence of PO43- anions was associated with the recovery of well-defined single crystal, lenticular nanorods. Increasing the time of synthesis in the presence of PO43- anions was similarly associated with the progressive formation and dissolution of beta-FeOOH and the growth of well-defined lenticular alpha-Fe2O3 nanorods. An HS processing temperature of 200 degrees C and an Fe3+-PO43- molar ratio of 31.5 yielded optimized crystalline lenticular alpha-Fe2O3 nanorods with an aspect ratio of similar to 7. Chemical analysis indicated that some P was retained within the bulk of the developed alpha-Fe2O3 nanorods.
引用
收藏
页码:18689 / 18698
页数:10
相关论文
共 35 条
[1]  
Boudias C., 1989, CARINE CRYSTALLOGRAP
[2]   Spin polarization and structure of thin iron oxide layers prepared by oxidation of Fe(110) [J].
Busch, M. ;
Gruyters, M. ;
Winter, H. .
SURFACE SCIENCE, 2006, 600 (18) :4166-4169
[3]   Hydrothermal technology for nanotechnology [J].
Byrappa, K. ;
Adschiri, T. .
PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, 2007, 53 (02) :117-166
[4]   Surfactant-free preparation and drug release property of magnetic hollow core/shell hierarchical nanostructures [J].
Cao, Shao-Wen ;
Zhu, Ying-Jie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (32) :12149-12156
[5]   Shape-Controlled Synthesis of Single-Crystalline Fe2O3 Hollow Nanocrystals and Their Tunable Optical Properties [J].
Fan, H. M. ;
You, G. J. ;
Li, Y. ;
Zheng, Z. ;
Tan, H. R. ;
Shen, Z. X. ;
Tang, S. H. ;
Feng, Y. P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (22) :9928-9935
[6]  
GARCON G, 2007, CANC LETT, V167, P7
[7]   Continuous aspect-ratio tuning and fine shape control of monodisperse α-Fe2O3 nanocrystals by a programmed microwave-hydrothermal method [J].
Hu, Xianluo ;
Yu, Jimmy C. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (06) :880-887
[8]   Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings [J].
Jia, Chun-Jiang ;
Sun, Ling-Dong ;
Luo, Feng ;
Han, Xiao-Dong ;
Heyderman, Laura J. ;
Yan, Zheng-Guang ;
Yan, Chun-Hua ;
Zheng, Kun ;
Zhang, Ze ;
Takano, Mikio ;
Hayashi, Naoaki ;
Eltschka, Matthias ;
Klaeui, Mathias ;
Ruediger, Ulrich ;
Kasama, Takeshi ;
Cervera-Gontard, Lionel ;
Dunin-Borkowski, Rafal E. ;
Tzvetkov, George ;
Raabe, Joerg .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (50) :16968-16977
[9]   Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach [J].
Jing, ZH ;
Wu, SH .
MATERIALS LETTERS, 2004, 58 (27-28) :3637-3640
[10]   Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging [J].
Lawaczeck, R ;
Menzel, M ;
Pietsch, H .
APPLIED ORGANOMETALLIC CHEMISTRY, 2004, 18 (10) :506-513