Simulation of the direct methanol fuel cell - I. Thermodynamic framework for a multicomponent membrane

被引:72
作者
Meyers, JP [1 ]
Newman, J [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
关键词
D O I
10.1149/1.1473188
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A theoretical framework that describes the equilibrium of species in a multicomponent membrane is presented. This framework considers explicitly first-order nonidealities that describe the interactions between pairs of species in a multicomponent membrane (e. g., Nafion). These binary interaction parameters are fit to methanol and water uptake data for liquid methanol solutions. A chemical model is combined with this framework to describe uptake of water vapor by the membrane over the entire range of relative humidity. The framework established here provides a means to describe the gradients in electrochemical potential for species in the membrane when describing the driving forces for multicomponent transport in a second companion paper. This paper describes equilibrium conditions; the second paper considers nonequilibrium conditions (transport and reaction kinetics). The modeling aspects are combined in a third paper to simulate the direct methanol fuel cell and quantify aspects of its design. (C) 2002 The Electrochemical Society.
引用
收藏
页码:A710 / A717
页数:8
相关论文
共 11 条
[1]  
Gates C., 1997, THESIS U CALIFORNIA
[2]  
HIRATA M, 1975, COMPUTER AIDED DATA
[3]  
MEYERS J, 1998, THESIS U CALIFORNIA
[4]   Simulation of the direct methanol fuel cell - II. Modeling and data analysis of transport and kinetic phenomena [J].
Meyers, JP ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (06) :A718-A728
[5]   Simulation of the direct methanol fuel cell - III. Design and optimization [J].
Meyers, JP ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (06) :A729-A735
[6]  
PRESS WH, 1992, NUMERICAL RECIPES FO, V1, P678
[7]   Methanol transport through nafion membranes - Electro-osmotic drag effects on potential step measurements [J].
Ren, XM ;
Springer, TE ;
Zawodzinski, TA ;
Gottesfeld, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (02) :466-474
[8]  
SCHROEDER P, 1903, Z PHYS CHEM, V45, P57
[9]   POLYMER ELECTROLYTE FUEL-CELL MODEL [J].
SPRINGER, TE ;
ZAWODZINSKI, TA ;
GOTTESFELD, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (08) :2334-2342