Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons

被引:140
作者
Zheng, WH
Kar, S
Quirion, R
机构
[1] McGill Univ, Douglas Hosp, Res Ctr, Dept Psychiat, Verdun, PQ H4H 1R3, Canada
[2] McGill Univ, Douglas Hosp, Res Ctr, Dept Pharmacol & Therapeut, Verdun, PQ H4H 1R3, Canada
关键词
D O I
10.1124/mol.62.2.225
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Insulin-like growth factor-1 (IGF-1) is a trophic factor promoting cell survival by activating phosphatidylinositol 3-kinase (PI3K)/Akt kinase pathway. FKHRL1, a member of the Forkhead family of transcription factors possibly involved in cell cycle and apoptosis, is a downstream target of Akt in fibroblasts. However, very little information is available concerning neurons. We report herein that IGF-1 rapidly induced the phosphorylation of endogenous FKHRL1 in hippocampal neurons. The PI3K/Akt kinase pathway mediates this action, as evidenced by the use of different kinase inhibitors, the expression of constitutively active Akt, and in vitro kinase assay. IGF-1 blocked the nuclear translocation of FKHRL1 in hippocampal neurons and promoted survival in parallel to the phosphorylation of Akt and FKHRL1. Similarly, the expression of constitutively active Akt in PC-12 cells increased the phosphorylation of FKHRL1 and promoted survival, whereas the expression of kinase dead Akt attenuated IGF-1-mediated survival of PC-12 cells. Moreover, the overexpression of wild-type FKHRL1 and its nonphosphorylated mutant induced apoptosis in cultured hippocampal neurons. Interestingly, IGF-1 and PI3-kinase inhibitors have no significant effect on the cell cycle inhibitor p27kip1 in hippocampal neurons. This finding suggests that in contrast to fibroblasts, FKHRL1 is unlikely to be involved in cell cycle in neurons. Taken together, these data reveal that endogenous FKHRL1 is a downstream substrate of PI3K/Akt in IGF-1 receptor signaling in hippocampal neurons and suggest that the phosphorylation of this transcription factor may play an important role in the neuronal survival properties of IGF-1.
引用
收藏
页码:225 / 233
页数:9
相关论文
共 40 条
[1]   PD-098059 IS A SPECIFIC INHIBITOR OF THE ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE KINASE IN-VITRO AND IN-VIVO [J].
ALESSI, DR ;
CUENDA, A ;
COHEN, P ;
DUDLEY, DT ;
SALTIEL, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27489-27494
[2]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[3]   PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2 [J].
Balendran, A ;
Casamayor, A ;
Deak, M ;
Paterson, A ;
Gaffney, P ;
Currie, R ;
Downes, CP ;
Alessi, DR .
CURRENT BIOLOGY, 1999, 9 (08) :393-404
[4]   Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a) [J].
Brunet, A ;
Park, J ;
Tran, H ;
Hu, LS ;
Hemmings, BA ;
Greenberg, ME .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (03) :952-965
[5]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[6]   Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology [J].
Butler, AA ;
Yakar, S ;
Gewolb, IH ;
Karas, M ;
Okubo, Y ;
LeRoith, D .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1998, 121 (01) :19-26
[7]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[8]   RAPAMYCIN FKBP SPECIFICALLY BLOCKS GROWTH-DEPENDENT ACTIVATION OF AND SIGNALING BY THE 70 KD S6 PROTEIN-KINASES [J].
CHUNG, J ;
KUO, CJ ;
CRABTREE, GR ;
BLENIS, J .
CELL, 1992, 69 (07) :1227-1236
[9]   Cellular survival: a play in three Akts [J].
Datta, SR ;
Brunet, A ;
Greenberg, ME .
GENES & DEVELOPMENT, 1999, 13 (22) :2905-2927
[10]  
DEL PL, 1997, SCIENCE, V278, P687