Synthesis, characterization, and biocompatibility of polyethylenimine-graft-poly(ethylene glycol) block copolymers

被引:195
作者
Petersen, H [1 ]
Fechner, PM [1 ]
Fischer, D [1 ]
Kissel, T [1 ]
机构
[1] Univ Marburg, Dept Pharmaceut & Biopharm, D-35032 Marburg, Germany
关键词
D O I
10.1021/ma012060a
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Two series of block copolymers were prepared by grafting linear poly(ethylene glycol) (PEG) onto branched polyethylenimine (PEI). In the first series, the PEI (25 000) was grafted with varied numbers of PEG blocks (5000). The second series was composed of copolymers all containing an equal amount of PEG (50%) and PEI (50%), but with PEG of different molecular weights (MW: 550-20 000). In a two-step synthesis, both the activation of monomethyl-PEGs and the coupling reactions of the PEGs with PEI were performed with hexamethylene diisocyanate (HMDI), leading to water-soluble copolymers with hydrolytically stable urethane and urea bonds. The molecular structure of the resulting copolymers was evaluated spectroscopically (NMR, FTIR). Thermal and calorimetric analysis (TGA, DSC) as well as size exclusion chromatography (SEC) verified the successful formation of the copolymers. MW was determined by static light scattering in combination with SEC. With respect to their application as gene transfer agents, the biocompatibility of the copolymers was studied using an in vitro cytotoxicity assay (lactate dehydrogenase assay) and blood compatibility tests (hemolysis and erythrocyte aggregation). It was found that PEG reduced the toxicity of PEI and prevented hemolysis as well as the aggregation of erythrocytes. The extent of the positive influence of PEG on the biocompatibility of the copolymers was found to be dependent upon both the number of PEG blocks and the structure of the block copolymers.
引用
收藏
页码:6867 / 6874
页数:8
相关论文
共 23 条
[1]   Interaction of metal compounds with 'double-hydrophilic' block copolymers in aqueous medium and metal colloid formation [J].
Bronstein, LM ;
Sidorov, SN ;
Gourkova, AY ;
Valetsky, PM ;
Hartmann, J ;
Breulmann, M ;
Colfen, H ;
Antonietti, M .
INORGANICA CHIMICA ACTA, 1998, 280 (1-2) :348-354
[2]  
Choi JH, 2001, B KOR CHEM SOC, V22, P46
[3]   Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier [J].
Choi, YH ;
Liu, F ;
Kim, JS ;
Choi, YK ;
Park, JS ;
Kim, SW .
JOURNAL OF CONTROLLED RELEASE, 1998, 54 (01) :39-48
[4]   Cationic polymer based gene delivery systems [J].
De Smedt, SC ;
Demeester, J ;
Hennink, WE .
PHARMACEUTICAL RESEARCH, 2000, 17 (02) :113-126
[5]  
DREBORG S, 1990, CRIT REV THER DRUG, V6, P315
[6]  
Erbacher P, 1999, J GENE MED, V1, P210
[7]   Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency [J].
Godbey, WT ;
Ku, KK ;
Hirasaki, GJ ;
Mikos, AG .
GENE THERAPY, 1999, 6 (08) :1380-1388
[8]   New class of polymers for the delivery of macromolecular therapeutics [J].
Gonzalez, H ;
Hwang, SJ ;
Davis, ME .
BIOCONJUGATE CHEMISTRY, 1999, 10 (06) :1068-1074
[9]   Interpolyelectrolyte and block ionomer complexes for gene delivery: Physicochemical aspects [J].
Kabanov, AV ;
Kabanov, VA .
ADVANCED DRUG DELIVERY REVIEWS, 1998, 30 (1-3) :49-60
[10]   WATER-SOLUBLE BLOCK POLYCATIONS AS CARRIERS FOR OLIGONUCLEOTIDE DELIVERY [J].
KABANOV, AV ;
VINOGRADOV, SV ;
SUZDALTSEVA, YG ;
ALAKHOV, VY .
BIOCONJUGATE CHEMISTRY, 1995, 6 (06) :639-643