Priming in Systemic Plant Immunity

被引:645
作者
Jung, Ho Won [1 ]
Tschaplinski, Timothy J. [2 ]
Wang, Lin [3 ]
Glazebrook, Jane [3 ]
Greenberg, Jean T. [1 ]
机构
[1] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA
[2] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA
[3] Univ Minnesota, Dept Plant Biol, Microbial & Plant Genom Inst, St Paul, MN 55108 USA
关键词
ACQUIRED-RESISTANCE; ARABIDOPSIS-THALIANA; SALICYLIC-ACID; SIGNAL; ACCUMULATION; PATHOGEN; TOBACCO;
D O I
10.1126/science.1170025
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plants possess inducible systemic defense responses when locally infected by pathogens. Bacterial infection results in the increased accumulation of the mobile metabolite azelaic acid, a nine-carbon dicarboxylic acid, in the vascular sap of Arabidopsis that confers local and systemic resistance against the pathogen Pseudomonas syringae. Azelaic acid primes plants to accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of the AZELAIC ACID INDUCED 1 (AZI1) gene, which is induced by azelaic acid, results in the specific loss of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction in plants. Furthermore, the predicted secreted protein AZI1 is also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 are components of plant systemic immunity involved in priming defenses.
引用
收藏
页码:89 / 91
页数:3
相关论文
共 13 条
[1]   Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis [J].
Cameron, RK ;
Paiva, NL ;
Lamb, CJ ;
Dixon, RA .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1999, 55 (02) :121-130
[2]   Cuticular defects lead to full immunity to a major plant pathogen [J].
Chassot, Celine ;
Nawrath, Christiane ;
Metraux, Jean-Pierre .
PLANT JOURNAL, 2007, 49 (06) :972-980
[3]   Plastid ω3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid [J].
Chaturvedi, Ratnesh ;
Krothapalli, Kartikeya ;
Makandar, Ragiba ;
Nandi, Ashis ;
Sparks, Alexis A. ;
Roth, Mary R. ;
Welti, Ruth ;
Shah, Jyoti .
PLANT JOURNAL, 2008, 54 (01) :106-117
[4]   INDUCED SYSTEMIC PROTECTION IN CUCUMBER - TIME OF PRODUCTION AND MOVEMENT OF THE SIGNAL [J].
DEAN, RA ;
KUC, J .
PHYTOPATHOLOGY, 1986, 76 (10) :966-970
[5]   SALICYLIC-ACID - A LIKELY ENDOGENOUS SIGNAL IN THE RESISTANCE RESPONSE OF TOBACCO TO VIRAL-INFECTION [J].
MALAMY, J ;
CARR, JP ;
KLESSIG, DF ;
RASKIN, I .
SCIENCE, 1990, 250 (4983) :1002-1004
[6]   A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis [J].
Maldonado, AM ;
Doerner, P ;
Dixon, RA ;
Lamb, CJ ;
Cameron, RK .
NATURE, 2002, 419 (6905) :399-403
[7]   The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance [J].
Nandi, A ;
Welti, R ;
Shah, J .
PLANT CELL, 2004, 16 (02) :465-477
[8]   Methyl salicylate is a critical mobile signal for plant systemic acquired resistance [J].
Park, Sang-Wook ;
Kaimoyo, Evans ;
Kumar, Dhirendra ;
Mosher, Stephen ;
Klessig, Daniel F. .
SCIENCE, 2007, 318 (5847) :113-116
[9]   A novel signaling pathway controlling induced systemic resistance in Arabidopsis [J].
Pieterse, CMJ ;
van Wees, SCM ;
van Pelt, JA ;
Knoester, M ;
Laan, R ;
Gerrits, N ;
Weisbeek, PJ ;
van Loon, LC .
PLANT CELL, 1998, 10 (09) :1571-1580
[10]   Systemic acquired resistance [J].
Ryals, JA ;
Neuenschwander, UH ;
Willits, MG ;
Molina, A ;
Steiner, HY ;
Hunt, MD .
PLANT CELL, 1996, 8 (10) :1809-1819