Status of and prospects for advanced tokamak regimes from multi-machine comparisons using the 'International Tokamak Physics Activity' database

被引:30
作者
Litaudon, X [1 ]
Barbato, E
Bécoulet, A
Doyle, EJ
Fujita, T
Gohil, P
Imbeaux, F
Sauter, O
Sips, G
Connor, JW
Doyle, EJ
Esipchuk, Y
Fujita, T
Fukuda, T
Gohil, P
Kinsey, J
Kirneva, N
Lebedev, S
Litaudon, X [1 ]
Mukhovatov, V
Rice, J
Synakowski, E
Toi, K
Unterberg, B
Vershkov, V
Wakatani, M
Aniel, T
Baranov, YF
Baranoto, E
Bécoulet, A
Behn, R
Bourdelle, C
Bracco, G
Budny, RV
Buratti, P
Doyle, EJ
Esipchuk, Y
Esposito, B
Ide, S
Field, AR
Fujita, T
Fukuda, T
Gohil, P
Gormezano, C
Greenfield, C
Greenwald, M
Hahm, TS
Hoang, GT
Hobirk, J
Hogeweij, D
机构
[1] CEA, EURATOM Assoc, F-13108 St Paul Les Durance, France
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[3] EURATOM, FOM, Inst Plasmafis Rijnhuizen, Nieuwegein, Netherlands
[4] Kyoto Univ, Kyoto, Japan
[5] Forschungszentrum Julich, Inst Plasmaphys, EURATOM Assoc,FZJ, Julich, Germany
[6] Natl Inst Fus Sci, Toki, Japan
[7] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA
[8] MIT, Cambridge, MA 02139 USA
[9] JWS, ITER, Naka, Ibaraki, Japan
[10] AF Ioffe Phys Tech Inst, St Petersburg, Russia
[11] Lehigh Univ, Bethlehem, PA 18015 USA
[12] Osaka Univ, Suita, Osaka, Japan
[13] IV Kurchatov Atom Energy Inst, Moscow 123182, Russia
[14] UKAEA, EURATOM Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[15] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany
[16] Assoc Euratom Confederat Suisse, CRPP, CH-1015 Lausanne, Switzerland
[17] Gen Atom Co, San Diego, CA 92186 USA
[18] Japan Atom Energy Res Inst, Naka Fus Res Estab, Naka, Ibaraki 31101, Japan
[19] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[20] EURATOM, ENEA Fus, CR Frascati, Frascati, Italy
[21] Chalmers, S-41296 Gothenburg, Sweden
[22] EURATOM, VR Assoc, Gothenburg, Sweden
关键词
D O I
10.1088/0741-3335/46/5A/002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Advanced tokamak regimes obtained in ASDEX Upgrade, DIII-D, FF-U, JET, JT-60U, TCV and Tore Supra experiments are assessed both in terms of their fusion performance and capability for ultimately reaching steady-state using data from the international internal transport barrier database. These advanced modes of tokamak operation are characterized by an improved core confinement and a modified current profile compared to the relaxed Ohmically driven one. The present results obtained in these experiments are studied in view of their prospect for achieving either long pulses ('hybrid' scenario with inductive and non-inductive current drive) or ultimately steady-state purely non-inductive current drive operation in next step devices such as ITER. A new operational diagram for advanced tokamak operation is proposed where the figure of merit characterizing the fusion performances and confinement, H X beta(N)/q(95)(2), is drawn versus the fraction of the plasma current driven by the bootstrap effect. In this diagram, present day advanced tokamak regimes have now reached an operational domain that is required in the non-inductive ITER current drive operation with typically 50% of the plasma current driven by the bootstrap effect (Green et al 2003 Plasma Phys. Control. Fusion 45 587). In addition, the existence domain of the advanced mode regimes is also mapped in terms of dimensionless plasmas physics quantities such as normalized Larmor radius, normalized collisionality, Mach number and ratio of ion to electron temperature. The gap between present day and future advanced tokamak experiments is quantitatively assessed in terms of these dimensionless parameters.
引用
收藏
页码:A19 / A34
页数:16
相关论文
共 48 条
[1]  
Agarici G, 1996, PLASMA PHYS CONTR F, V38, pA251, DOI 10.1088/0741-3335/38/12A/019
[2]  
BECOULET A, 2003, 15 TOP C RAD FREQ PO
[3]  
BEHN R, 2003, P 30 EUR C PLASM P A, V27
[4]   The physics of the International Thermonuclear Experimental Reactor FEAT [J].
Campbell, DJ .
PHYSICS OF PLASMAS, 2001, 8 (05) :2041-2049
[5]   Influence of the q-profile shape on plasma performance in JET [J].
Challis, CD ;
Litaudon, X ;
Tresset, G ;
Baranov, YF ;
Bécoulet, A ;
Giroud, C ;
Hawkes, NC ;
Howell, DF ;
Joffrin, E ;
Lomas, PJ ;
Mailloux, J ;
Mantsinen, MJ ;
Stratton, BC ;
Ward, DJ ;
Zastrow, KD .
PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (07) :1031-1055
[6]   Effect of q-profile modification by LHCD on internal transport barriers in JET [J].
Challis, CD ;
Baranov, YF ;
Conway, GD ;
Gormezano, C ;
Gowers, CW ;
Hawkes, NC ;
Hender, TC ;
Joffrin, E ;
Mailloux, J ;
Mazon, D ;
Podda, S ;
Prentice, R ;
Rimini, FG ;
Sharapov, SE ;
Sips, ACC ;
Stratton, BC ;
Testa, D ;
Zastrow, KD .
PLASMA PHYSICS AND CONTROLLED FUSION, 2001, 43 (07) :861-879
[7]  
CONNOR JW, 2004, IN PRESS NUCL FUSION
[8]   JET quasistationary internal-transport-barrier operation with active control of the pressure profile -: art. no. 145004 [J].
Crisanti, F ;
Litaudon, X ;
Mailloux, J ;
Mazon, D ;
Barbato, E ;
Baranov, Y ;
Bécoulet, A ;
Bécoulet, M ;
Challis, CD ;
Conway, GD ;
Dux, R ;
Eriksson, LG ;
Esposito, B ;
Frigione, D ;
Hennequin, P ;
Giroud, C ;
Hawkes, N ;
Huysmans, G ;
Imbeaux, F ;
Joffrin, E ;
Lomas, P ;
Lotte, P ;
Maget, P ;
Mantsinen, M ;
Moreau, D ;
Rimini, F ;
Riva, M ;
Sarazin, Y ;
Tresset, G ;
Tuccillo, AA ;
Zastrow, KD .
PHYSICAL REVIEW LETTERS, 2002, 88 (14) :145004/1-145004/4
[9]   The quiescent double barrier regime in the DIII-D tokamak [J].
Doyle, EJ ;
Baylor, LR ;
Burrell, KH ;
Casper, TA ;
DeBoo, JC ;
Ernst, DR ;
Garofalo, AM ;
Gohil, P ;
Greenfield, CM ;
Groebner, RJ ;
Hyatt, AW ;
Jackson, GL ;
Jernigan, TC ;
Kinsey, JE ;
Lao, LL ;
Lasnier, CJ ;
Leboeuf, JN ;
Makowski, M ;
McKee, GR ;
Moyer, RA ;
Murakami, M ;
Osborne, TH ;
Peebles, WA ;
Porkolab, M ;
Porter, GD ;
Rhodes, TL ;
Rost, JC ;
Rudakov, D ;
Staebler, GM ;
Stallard, BW ;
Strait, J ;
Sydora, RD ;
Synakowski, EJ ;
Wade, MR ;
Wang, G ;
Watkins, JG ;
West, WP ;
Zeng, L .
PLASMA PHYSICS AND CONTROLLED FUSION, 2001, 43 :A95-A112
[10]  
FRIGIONE D, 2003, P 30 EUR C PLASM P A, V27