A picogram- and nanometre-scale photonic-crystal optomechanical cavity

被引:596
作者
Eichenfield, Matt [1 ]
Camacho, Ryan [1 ]
Chan, Jasper [1 ]
Vahala, Kerry J. [1 ]
Painter, Oskar [1 ]
机构
[1] CALTECH, Sr Lab Appl Phys, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
NANOCAVITY; DESIGN;
D O I
10.1038/nature08061
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The dynamic back-action caused by electromagnetic forces (radiation pressure) in optical(1-6) and microwave(7) cavities is of growing interest(8). Back-action cooling, for example, is being pursued as a means of achieving the quantum ground state of macroscopic mechanical oscillators. Work in the optical domain has revolved around millimetre-or micrometre-scale structures using the radiation pressure force. By comparison, in microwave devices, low-loss superconducting structures have been used for gradient-force-mediated coupling to a nanomechanical oscillator of picogram mass(7). Here we describe measurements of an optical system consisting of a pair of specially patterned nanoscale beams in which optical and mechanical energies are simultaneously localized to a cubic-micron-scale volume, and for which large perphoton optical gradient forces are realized. The resulting scale of the per-photon force and the mass of the structure enable the exploration of cavity optomechanical regimes in which, for example, the mechanical rigidity of the structure is dominantly provided by the internal light field itself. In addition to precision measurement and sensitive force detection(9), nano-optomechanics may find application in reconfigurable and tunable photonic systems(10), light-based radio-frequency communication(11) and the generation of giant optical nonlinearities for wavelength conversion and optical buffering(12).
引用
收藏
页码:550 / U79
页数:7
相关论文
共 30 条
[1]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74
[2]   History of optical trapping and manipulation of small-neutral particle, atoms, and molecules [J].
Ashkin, A .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000, 6 (06) :841-856
[3]   Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity [J].
Chan, Jasper ;
Eichenfield, Matt ;
Camacho, Ryan ;
Painter, Oskar .
OPTICS EXPRESS, 2009, 17 (05) :3802-3817
[4]   Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK [J].
Corbitt, Thomas ;
Wipf, Christopher ;
Bodiya, Timothy ;
Ottaway, David ;
Sigg, Daniel ;
Smith, Nicolas ;
Whitcomb, Stanley ;
Mavalvala, Nergis .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[5]   Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces [J].
Eichenfield, Matt ;
Michael, Christopher P. ;
Perahia, Raviv ;
Painter, Oskar .
NATURE PHOTONICS, 2007, 1 (07) :416-422
[6]   Self-cooling of a micromirror by radiation pressure [J].
Gigan, S. ;
Boehm, H. R. ;
Paternostro, M. ;
Blaser, F. ;
Langer, G. ;
Hertzberg, J. B. ;
Schwab, K. C. ;
Baeuerle, D. ;
Aspelmeyer, M. ;
Zeilinger, A. .
NATURE, 2006, 444 (7115) :67-70
[7]   Photonic RF down-converter based on optomechanical oscillation [J].
Hossein-Zadeh, Mani ;
Vahala, Kerry J. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (1-4) :234-236
[8]   Optical excitation of nanoelectromechanical oscillators [J].
Ilic, B ;
Krylov, S ;
Aubin, K ;
Reichenbach, R ;
Craighead, HG .
APPLIED PHYSICS LETTERS, 2005, 86 (19) :1-3
[9]   Cavity optomechanics: Back-action at the mesoscale [J].
Kippenberg, T. J. ;
Vahala, K. J. .
SCIENCE, 2008, 321 (5893) :1172-1176
[10]   Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity [J].
Kippenberg, TJ ;
Rokhsari, H ;
Carmon, T ;
Scherer, A ;
Vahala, KJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (03)