Experimental results in button cells show that a porous chemically inert barrier layer can extend the range of coke-free operation on Ni-YSZ anode structures, even with pure methane as the fuel. The first objective of this paper is to assist interpreting these results using computational models that consider porous-media transport and heterogeneous reforming chemistry. The second objective is to predict the performance of a chemically inert barrier layer in a tubular, anode-supported, solid-oxide fuel cell. (c) 2006 Elsevier B.V. All rights reserved.