RETRACTED: Are some putative glycogen accumulating organisms (GAO) in anaerobic:: aerobic activated sludge systems members of the α-Proteobacteria? (Retracted article. See vol 155, pg 2460, 2009)

被引:53
作者
Beer, M [1 ]
Kong, YH [1 ]
Seviour, RJ [1 ]
机构
[1] La Trobe Univ, Biotechnol Res Ctr, Bendigo, Vic 3552, Australia
来源
MICROBIOLOGY-SGM | 2004年 / 150卷
关键词
D O I
10.1099/mic.0.26825-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Activated sludge plants designed to remove phosphorus microbiologically often perform unreliably. One suggestion is that the polyphosphate-accumulating organisms (PAO) are out-competed for substrates by another group of bacteria, the glycogen-accumulating organisms (GAO) in the anaerobic zones of these processes. This study used fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) to analyse the communities from laboratory-scale anaerobic: aerobic sequencing batch reactors. Members of the genus Sphingomonas in the alpha-Proteobacteria were present in large numbers in communities with poor phosphorus removal capacity where the biomass had a high glycogen content. Their ability to store poly-beta-hydroxyalkanoates anaerobically, but not aerobically, and not accumulate polyphosphate aerobically is consistent with these organisms behaving as GAO there. No evidence was found to support an important role for the gamma-Proteobacteria as possible GAO in these communities, although these bacterial populations have been considered in other studies to act as possible competitors for the PAO.
引用
收藏
页码:2267 / 2275
页数:9
相关论文
共 43 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[3]  
Bond PL, 1999, APPL ENVIRON MICROB, V65, P4077
[4]  
Bouchez T, 2000, ENVIRON MICROBIOL, V2, P179
[5]   COMPETITION BETWEEN POLYPHOSPHATE AND POLYSACCHARIDE ACCUMULATING BACTERIA IN ENHANCED BIOLOGICAL PHOSPHATE REMOVAL SYSTEMS [J].
CECH, JS ;
HARTMAN, P .
WATER RESEARCH, 1993, 27 (07) :1219-1225
[6]   The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy [J].
Cole, JR ;
Chai, B ;
Marsh, TL ;
Farris, RJ ;
Wang, Q ;
Kulam, SA ;
Chandra, S ;
McGarrell, DM ;
Schmidt, TM ;
Garrity, GM ;
Tiedje, JM .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :442-443
[7]   Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation [J].
Crocetti, GR ;
Hugenholtz, P ;
Bond, PL ;
Schuler, A ;
Keller, J ;
Jenkins, D ;
Blackall, LL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (03) :1175-1182
[8]   Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes [J].
Crocetti, GR ;
Banfield, JF ;
Keller, J ;
Bond, PL ;
Blackall, LL .
MICROBIOLOGY-SGM, 2002, 148 :3353-3364
[9]   Characterisation of the microbial 16S rDNA diversity of an aerobic phosphorus-removal ecosystem and monitoring of its transition to nitrate respiration [J].
Dabert, P ;
Sialve, B ;
Delgenès, JP ;
Moletta, R ;
Godon, JJ .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2001, 55 (04) :500-509
[10]   The domain-specific probe EUB338 is insufficient for the detection of all Bacteria:: Development and evaluation of a more comprehensive probe set [J].
Daims, H ;
Brühl, A ;
Amann, R ;
Schleifer, KH ;
Wagner, M .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 1999, 22 (03) :434-444