Entangled mechanical oscillators

被引:149
作者
Jost, J. D. [1 ]
Home, J. P. [1 ]
Amini, J. M. [1 ]
Hanneke, D. [1 ]
Ozeri, R. [2 ]
Langer, C. [3 ]
Bollinger, J. J. [1 ]
Leibfried, D. [1 ]
Wineland, D. J. [1 ]
机构
[1] Natl Inst Stand & Technol, Div Time & Frequency, Boulder, CO 80305 USA
[2] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[3] Lockheed Martin, Denver, CO 80127 USA
关键词
CURRENT SITUATION; QUANTUM; IONS; STATES;
D O I
10.1038/nature08006
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hallmarks of quantum mechanics include superposition and entanglement. In the context of large complex systems, these features should lead to situations as envisaged in the 'Schrodinger's cat'(1) thought experiment (where the cat exists in a superposition of alive and dead states entangled with a radioactive nucleus). Such situations are not observed in nature. This may be simply due to our inability to sufficiently isolate the system of interest from the surrounding environment(2,3)- a technical limitation. Another possibility is some as-yet-undiscovered mechanism that prevents the formation of macroscopic entangled states(4). Such a limitation might depend on the number of elementary constituents in the system(5) or on the types of degrees of freedom that are entangled. Tests of the latter possibility have been made with photons, atoms and condensed matter devices(6,7). One system ubiquitous to nature where entanglement has not been previously demonstrated consists of distinct mechanical oscillators. Here we demonstrate deterministic entanglement of separated mechanical oscillators, consisting of the vibrational states of two pairs of atomic ions held in different locations. We also demonstrate entanglement of the internal states of an atomic ion with a distant mechanical oscillator. These results show quantum entanglement in a degree of freedom that pervades the classical world. Such experiments may lead to the generation of entangled states of larger-scale mechanical oscillators(8-10), and offer possibilities for testing non-locality with mesoscopic systems(11). In addition, the control developed here is an important ingredient for scaling-up quantum information processing with trapped atomic ions(12-14).
引用
收藏
页码:683 / U84
页数:4
相关论文
共 31 条
[1]  
ASPECT A, 2002, QUANTUM UNSPEAKABLES, pCH9
[2]  
Aspelmeyer M, 2008, PHYS WORLD, V21, P22
[3]   Physics: Quantum all the way [J].
Ball, Philip .
NATURE, 2008, 453 (7191) :22-25
[4]   Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic -: art. no. 042302 [J].
Barrett, MD ;
DeMarco, B ;
Schaetz, T ;
Meyer, V ;
Leibfried, D ;
Britton, J ;
Chiaverini, J ;
Itano, WM ;
Jelenkovic, B ;
Jost, JD ;
Langer, C ;
Rosenband, T ;
Wineland, DJ .
PHYSICAL REVIEW A, 2003, 68 (04)
[5]   Deterministic quantum teleportation of atomic qubits [J].
Barrett, MD ;
Chiaverini, J ;
Schaetz, T ;
Britton, J ;
Itano, WM ;
Jost, JD ;
Knill, E ;
Langer, C ;
Leibfried, D ;
Ozeri, R ;
Wineland, DJ .
NATURE, 2004, 429 (6993) :737-739
[6]   Dynamical reduction models [J].
Bassi, A ;
Ghirardi, GC .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 379 (5-6) :257-426
[7]   A scalable quantum computer with ions in an array of microtraps [J].
Cirac, JI ;
Zoller, P .
NATURE, 2000, 404 (6778) :579-581
[8]   Frequency Metrology on Single Trapped Ions in the Weak Binding Limit: The 3s1/2-3p3/2 Transition in 24Mg+ [J].
Herrmann, M. ;
Batteiger, V. ;
Knuenz, S. ;
Saathoff, G. ;
Udem, Th. ;
Haensch, T. W. .
PHYSICAL REVIEW LETTERS, 2009, 102 (01)
[9]   Architecture for a large-scale ion-trap quantum computer [J].
Kielpinski, D ;
Monroe, C ;
Wineland, DJ .
NATURE, 2002, 417 (6890) :709-711
[10]   A decoherence-free quantum memory using trapped ions [J].
Kielpinski, D ;
Meyer, V ;
Rowe, MA ;
Sackett, CA ;
Itano, WM ;
Monroe, C ;
Wineland, DJ .
SCIENCE, 2001, 291 (5506) :1013-1015