Recursive training of neural networks for classification

被引:2
作者
Aladjem, M [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2000年 / 11卷 / 02期
关键词
autoassociative network; linear and nonlinear classification functions; neural networks for classifications; projection pursuit; structure removal;
D O I
10.1109/72.839018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method for recursive training of neural networks for classification is proposed. It searches for the discriminant functions corresponding to several small Local minima of the error function. The novelty of the proposed method lies in the transformation of the data into new training data with a deflated minimum of the error function and iteration to obtain the nest solution. A simulation study and a character recognition application indicate that the proposed method has the potential to escape from local minima and to direct the local optimizer to new solutions.
引用
收藏
页码:496 / 503
页数:8
相关论文
共 10 条
[1]  
Aladjem M, 1999, LECT NOTES COMPUT SC, V1642, P223
[3]  
Aladjem M, 1998, INT C PATT RECOG, P450
[4]   Nonparametric discriminant analysis via recursive optimization of Patrick-Fisher distance [J].
Aladjem, ME .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1998, 28 (02) :292-299
[5]  
ALADJEM ME, 1998, LECT NOTES COMPUTER, V1451, P775
[6]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[7]  
Devijver P., 1982, PATTERN RECOGN
[8]   EXPLORATORY PROJECTION PURSUIT [J].
FRIEDMAN, JH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (397) :249-266
[9]  
Papoulis A., 1991, PROBABILITY RANDOM V
[10]   SOME PRACTICAL ASPECTS OF EXPLORATORY PROJECTION PURSUIT [J].
SUN, JY .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (01) :68-80