Structural mining: Self-consistent design on flexible protein-peptide docking and transferable binding affinity potential

被引:50
作者
Liu, ZJ [1 ]
Dominy, BN [1 ]
Shakhnovich, EI [1 ]
机构
[1] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA
关键词
D O I
10.1021/ja032018q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A flexible protein-peptide docking method has been designed to consider not only ligand flexibility but also the flexibility of the protein. The method is based on a Monte Carlo annealing process. Simulations with a distance root-mean-square (dRMS) virtual energy function revealed that the flexibility of protein side chains was as important as ligand flexibility for successful protein-peptide docking. On the basis of mean field theory, a transferable potential was designed to evaluate distance-dependent protein-ligand interactions and atomic solvation energies. The potential parameters were developed using a self-consistent process based on only 10 known complex structures. The effectiveness of each intermediate potential was judged on the basis of a Z score, approximating the gap between the energy of the native complex and the average energy of a decoy set. The Z score was determined using experimentally determined native structures and decoys generated by docking with the intermediate potentials. Using 6600 generated decoys and the Z score optimization criterion proposed in this work, the developed potential yielded an acceptable correlation of R-2 = 0.77, with binding free energies determined for known MHC I complexes (Class I Major Histocompatibility protein HLA-A*0201) which were not present in the training set. Test docking on 25 complexes further revealed a significant correlation between energy and dRMS, important for identifying native-like conformations. The near-native structures always belonged to one of the conformational classes with lower predicted binding energy. The lowest energy docked conformations are generally associated with near-native conformations, less than 3.0 Angstrom dRMS (and in many cases less than 1.0 Angstrom) from the experimentally determined structures.
引用
收藏
页码:8515 / 8528
页数:14
相关论文
共 57 条
[1]   NON-INTERACTING LOCAL-STRUCTURE MODEL OF FOLDING AND UNFOLDING TRANSITION IN GLOBULAR-PROTEINS .2. APPLICATION TO TWO-DIMENSIONAL LATTICE PROTEINS [J].
ABE, H ;
GO, N .
BIOPOLYMERS, 1981, 20 (05) :1013-1031
[2]  
AJAY MMA, 1995, J MED CHEM, V38, P4953
[3]   Roles of the hinge region and the DNA binding domain of the bovine papillomavirus type 1 E2 protein in initiation of DNA replication [J].
Allikas, A ;
Örd, D ;
Kurg, R ;
Kivi, S ;
Ustav, M .
VIRUS RESEARCH, 2001, 75 (02) :95-106
[4]   KINETICS OF FORMATION OF NATIVE RIBONUCLEASE DURING OXIDATION OF REDUCED POLYPEPTIDE CHAIN [J].
ANFINSEN, CB ;
HABER, E ;
SELA, M ;
WHITE, FH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1961, 47 (09) :1309-+
[5]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[6]   Weighted geometric docking: Incorporating external information in the rotation-translation scan [J].
Ben-Zeev, E ;
Eisenstein, M .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 2003, 52 (01) :24-27
[7]  
Binder K., 1992, MONTE CARLO SIMULATI
[9]   ZDOCK: An initial-stage protein-docking algorithm [J].
Chen, R ;
Li, L ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 52 (01) :80-87
[10]   A novel shape complementarity scoring function for protein-protein docking [J].
Chen, R ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 51 (03) :397-408