Efficient linear-scaling second-order Moller-Plesset perturbation theory: The divide-expand-consolidate RI-MP2 model

被引:48
作者
Baudin, Pablo [1 ]
Ettenhuber, Patrick [1 ]
Reine, Simen [2 ]
Kristensen, Kasper [1 ]
Kjaergaard, Thomas [1 ]
机构
[1] Aarhus Univ, Dept Chem, qLEAP Ctr Theoret Chem, Langelandsgade 140, DK-8000 Aarhus C, Denmark
[2] Univ Oslo, Dept Chem, Ctr Theoret & Computat Chem, POB 1033, N-1315 Blindern, Norway
基金
欧洲研究理事会;
关键词
DENSITY FITTING APPROXIMATIONS; ELECTRONIC-STRUCTURE CALCULATIONS; MOLECULAR-ORBITAL METHOD; AUXILIARY BASIS-SETS; IDENTITY APPROXIMATION; COUPLED-CLUSTER; AB-INITIO; CHEMISTRY CALCULATIONS; PARALLEL ALGORITHM; LAPLACE TRANSFORM;
D O I
10.1063/1.4940732
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Resolution of the Identity second-order Moller-Plesset perturbation theory (RI-MP2) method is implemented within the linear-scaling Divide-Expand-Consolidate (DEC) framework. In a DEC calculation, the full molecular correlated calculation is replaced by a set of independent fragment calculations each using a subset of the total orbital space. The number of independent fragment calculations scales linearly with the system size, rendering the method linear-scaling and massively parallel. The DEC-RI-MP2 method can be viewed as an approximation to the DEC-MP2 method where the RI approximation is utilized in each fragment calculation. The individual fragment calculations scale with the fifth power of the fragment size for both methods. However, the DEC-RI-MP2 method has a reduced prefactor compared to DEC-MP2 and is well-suited for implementation on massively parallel supercomputers, as demonstrated by test calculations on a set of medium-sized molecules. The DEC error control ensures that the standard RI-MP2 energy can be obtained to the predefined precision. The errors associated with the RI and DEC approximations are compared, and it is shown that the DECRI-MP2 method can be applied to systems far beyond the ones that can be treated with a conventional RI-MP2 implementation. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 81 条
[1]   The Dalton quantum chemistry program system [J].
Aidas, Kestutis ;
Angeli, Celestino ;
Bak, Keld L. ;
Bakken, Vebjorn ;
Bast, Radovan ;
Boman, Linus ;
Christiansen, Ove ;
Cimiraglia, Renzo ;
Coriani, Sonia ;
Dahle, Pal ;
Dalskov, Erik K. ;
Ekstrom, Ulf ;
Enevoldsen, Thomas ;
Eriksen, Janus J. ;
Ettenhuber, Patrick ;
Fernandez, Berta ;
Ferrighi, Lara ;
Fliegl, Heike ;
Frediani, Luca ;
Hald, Kasper ;
Halkier, Asger ;
Hattig, Christof ;
Heiberg, Hanne ;
Helgaker, Trygve ;
Hennum, Alf Christian ;
Hettema, Hinne ;
Hjertenaes, Eirik ;
Host, Stinne ;
Hoyvik, Ida-Marie ;
Iozzi, Maria Francesca ;
Jansik, Branislav ;
Jensen, Hans Jorgen Aa. ;
Jonsson, Dan ;
Jorgensen, Poul ;
Kauczor, Joanna ;
Kirpekar, Sheela ;
Kjrgaard, Thomas ;
Klopper, Wim ;
Knecht, Stefan ;
Kobayashi, Rika ;
Koch, Henrik ;
Kongsted, Jacob ;
Krapp, Andreas ;
Kristensen, Kasper ;
Ligabue, Andrea ;
Lutnaes, Ola B. ;
Melo, Juan I. ;
Mikkelsen, Kurt V. ;
Myhre, Rolf H. ;
Neiss, Christian .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2014, 4 (03) :269-284
[2]   ELIMINATION OF ENERGY DENOMINATORS IN MOLLER-PLESSET PERTURBATION-THEORY BY A LAPLACE TRANSFORM APPROACH [J].
ALMLOF, J .
CHEMICAL PHYSICS LETTERS, 1991, 181 (04) :319-320
[3]   Unbiased auxiliary basis sets for accurate two-electron integral approximations [J].
Aquilante, Francesco ;
Lindh, Roland ;
Pedersen, Thomas Bondo .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (11)
[4]   Atomic Cholesky decompositions: A route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency [J].
Aquilante, Francesco ;
Gagliardi, Laura ;
Pedersen, Thomas Bondo ;
Lindh, Roland .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (15)
[5]   Linear scaling second-order Moller-Plesset theory in the atomic orbital basis for large molecular systems [J].
Ayala, PY ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08) :3660-3671
[6]   Large-scale correlated electronic structure calculations: The RI-MP2 method on parallel computers [J].
Bernholdt, DE ;
Harrison, RJ .
CHEMICAL PHYSICS LETTERS, 1996, 250 (5-6) :477-484
[7]   Fitting basis sets for the RI-MP2 approximate second-order many-body perturbation theory method [J].
Bernholdt, DE ;
Harrison, RJ .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (05) :1593-1600
[9]   Moller-Plesset perturbation theory: from small molecule methods to methods for thousands of atoms [J].
Cremer, Dieter .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (04) :509-530
[10]   Approximate ab initio energies by systematic molecular fragmentation -: art. no. 154102 [J].
Deev, V ;
Collins, MA .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (15)