Engineering a disulfide bond and free thiols in the lantibiotic nisin Z

被引:39
作者
van Kraaij, C
Breukink, E
Rollema, HS
Bongers, RS
Kosters, HA
de Kruijff, B
Kuipers, OP
机构
[1] NIZO Food Res, Sect Flavours & Nat Ingredients, NL-6710 BA Ede, Netherlands
[2] Univ Utrecht, Biomembrane Inst, Ctr Biomembranes & Lipid Enzymol, Dept Membrane Biochem, NL-3508 TC Utrecht, Netherlands
[3] Univ Groningen, Dept Genet, Haren, Netherlands
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2000年 / 267卷 / 03期
关键词
cysteine; Lactococcus lactis; mutagenesis; nisin; protein engineering;
D O I
10.1046/j.1432-1327.2000.01075.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The antimicrobial peptide nisin contains the uncommon amino acid residues lanthionine and methyl-lanthionine, which are post-translationally formed from Ser, Thr and Cys residues. To investigate the importance of these uncommon residues for nisin activity, a mutant was designed in which Thr13 was replaced by a Cys residue, which prevents the formation of the thioether bond of ring C. Instead, Cys13 couples with Cys19 via an intramolecular disulfide bridge, a bond that is very unusual in lantibiotics. NMR analysis of this mutant showed a structure very similar to that of wild-type nisin, except for the configuration of ring C. The modification was accompanied by a dramatic reduction in antimicrobial activity to less than 1% of wild-type activity, indicating that the lanthionine of ring C is very important for this activity. The nisin Z mutants S5C and M17C were also isolated and characterized; they are the first lantibiotics known that contain an additional Cys residue that is not involved in bridge formation but is present as a free thiol. Secretion of these peptides by the lactococcal producer cells, as well as their antimicrobial activity, was found to be strongly dependent on a reducing environment. Their ability to permeabilize lipid vesicles was not thiol-dependent. Labeling of M17C nisin Z with iodoacetamide abolished the thiol-dependence of the peptide. These results show that the presence of a reactive Cys residue in nisin has a strong effect on the antimicrobial properties of the peptide, which is probably the result of interaction of these residues with thiol groups on the outside of bacterial cells.
引用
收藏
页码:901 / 909
页数:9
相关论文
共 32 条
[1]   An interferometric method for measurement of the detector MTF [J].
Andersen, MI ;
Sorensen, AN .
EXPERIMENTAL ASTRONOMY, 1998, 8 (01) :9-12
[2]   Engineering of a novel thioether bridge and role of modified residues in the lantibiotic pep5 [J].
Bierbaum, G ;
Szekat, C ;
Josten, M ;
Heidrich, C ;
Kempter, C ;
Jung, G ;
Sahl, HG .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (02) :385-392
[3]   STRUCTURE AND FUNCTION OF PNEUMOLYSIN, THE MULTIFUNCTIONAL, THIOL-ACTIVATED TOXIN OF STREPTOCOCCUS-PNEUMONIAE [J].
BOULNOIS, GJ ;
PATON, JC ;
MITCHELL, TJ ;
ANDREW, PW .
MOLECULAR MICROBIOLOGY, 1991, 5 (11) :2611-2616
[4]   The orientation of nisin in membranes [J].
Breukink, E ;
van Kraaij, C ;
van Dalen, A ;
Demel, RA ;
Siezen, RJ ;
de Kruijff, B ;
Kuipers, OP .
BIOCHEMISTRY, 1998, 37 (22) :8153-8162
[5]   The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane [J].
Breukink, E ;
vanKraaij, C ;
Demel, RA ;
Siezen, RJ ;
Kuipers, OP ;
deKruijff, B .
BIOCHEMISTRY, 1997, 36 (23) :6968-6976
[6]   Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics [J].
Brötz, H ;
Josten, M ;
Wiedemann, I ;
Schneider, U ;
Götz, F ;
Bierbaum, G ;
Sahl, HG .
MOLECULAR MICROBIOLOGY, 1998, 30 (02) :317-327
[7]   ANALYSIS OF GENE-CONTROL SIGNALS BY DNA-FUSION AND CLONING IN ESCHERICHIA-COLI [J].
CASADABAN, MJ ;
COHEN, SN .
JOURNAL OF MOLECULAR BIOLOGY, 1980, 138 (02) :179-207
[8]   Structure-activity relationships in the peptide antibiotic nisin: Antibacterial activity of fragments of nisin [J].
Chan, WC ;
Leyland, M ;
Clark, J ;
Dodd, HM ;
Lian, LY ;
Gasson, MJ ;
Bycroft, BW ;
Roberts, GCK .
FEBS LETTERS, 1996, 390 (02) :129-132
[9]   MECHANISTIC STUDIES OF LANTIBIOTIC-INDUCED PERMEABILIZATION OF PHOSPHOLIPID-VESICLES [J].
DRIESSEN, AJM ;
VANDENHOOVEN, HW ;
KUIPER, W ;
VANDEKAMP, M ;
SAHL, HG ;
KONINGS, RNH ;
KONINGS, WN .
BIOCHEMISTRY, 1995, 34 (05) :1606-1614
[10]   Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu126 and Arg144 are essential [J].
Frillingos, S ;
Gonzalez, A ;
Kaback, HR .
BIOCHEMISTRY, 1997, 36 (47) :14284-14290