Cutpoint selection for categorizing a continuous predictor

被引:27
作者
O'Brien, SM [1 ]
机构
[1] NIEHS, Biostat Branch, Res Triangle Pk, NC 27709 USA
关键词
multiple changepoint fitting; optimal categorization; piecewise constant regression; regression tree; smoothing;
D O I
10.1111/j.0006-341X.2004.00196.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article presents a new approach for choosing the number of categories and the location of category cutpoints when a continuous exposure variable needs to be categorized to obtain tabular summaries of the exposure effect. The optimum categorization is defined as the partition that minimizes a measure of distance between the true expected value of the outcome for each subject and the estimated average outcome among subjects in the same exposure category. To estimate the optimum. partition, an efficient nonparametric estimate of the unknown regression function is substituted into a formula for the asymptotically optimum categorization. This new approach is easy to implement and it outperforms existing cutpoint selection methods.
引用
收藏
页码:504 / 509
页数:6
相关论文
共 20 条
[1]  
AGARWAL GG, 1978, THESIS PURDUE U W LA
[2]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[3]   Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation [J].
Braun, JV ;
Braun, RK ;
Müller, HG .
BIOMETRIKA, 2000, 87 (02) :301-314
[4]   An epidemiological study of tuberculosis and HIV infection in Tanzania, 1991-1993 [J].
Chum, HJ ;
OBrien, RJ ;
Chonde, TM ;
Graf, P ;
Rieder, HL .
AIDS, 1996, 10 (03) :299-309
[5]   NOTE ON GROUPING [J].
COX, DR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1957, 52 (280) :543-547
[6]   DOSE-RESPONSE AND TREND ANALYSIS IN EPIDEMIOLOGY - ALTERNATIVES TO CATEGORICAL ANALYSIS [J].
GREENLAND, S .
EPIDEMIOLOGY, 1995, 6 (04) :356-365
[8]  
HALL P, 1990, BIOMETRIKA, V77, P415, DOI 10.1093/biomet/77.2.415
[9]  
Hastie T., 1999, Generalized Additive Models
[10]  
*MATHSOFT, 1999, S PLUS 2000 GUID STA, V1